The value of the variable x is found to be x = 9.
<h3>What is termed as angle bisector?</h3>
- In geometry, an angle bisector is a line that divides an angle into two equal angles.
- A bisector is something that divides a shape or thing into two equal portions.
- An angle bisector is a ray that divides an angle into two equal components of the same measurement.
A bisected angle divides the two sides in equals.
JKM = LKM
As, both are equal.
Then, each of these angles are 1/2 the angle JKL.
1/2 JKL = MKL
1/2 ×( 92) = 5x + 1
Further simplifying;
46 = 5x+1
Subtract 1 from each side
46-1 = 5x
45 = 5x
Divide each side by 5
45/5 = 5x/5
x = 9
Thus, the value of the unknown variable is found to be x = 9 units.
To know more about the angle bisector, here
brainly.com/question/14399747
#SPJ9
9514 1404 393
Answer:
1. proportional, 6
2. not proportional
Step-by-step explanation:
<u>Table 1</u>
Each y-value is 6 times the corresponding x-value, so the variables are proportional, and y = 6 times x.
<u>Table 2</u>
The ratios of y to x are 2, 4, 8, so are not the same. The values are not proportional.
Answers:
33. Angle R is 68 degrees
35. The fraction 21/2 or the decimal 10.5
36. Triangle ACG
37. Segment AB
38. The values are x = 6; y = 2
40. The value of x is x = 29
41. C) 108 degrees
42. The value of x is x = 70
43. The segment WY is 24 units long
------------------------------------------------------
Work Shown:
Problem 33)
RS = ST, means that the vertex angle is at angle S
Angle S = 44
Angle R = x, angle T = x are the base angles
R+S+T = 180
x+44+x = 180
2x+44 = 180
2x+44-44 = 180-44
2x = 136
2x/2 = 136/2
x = 68
So angle R is 68 degrees
-----------------
Problem 35)
Angle A = angle H
Angle B = angle I
Angle C = angle J
A = 97
B = 4x+4
C = J = 37
A+B+C = 180
97+4x+4+37 = 180
4x+138 = 180
4x+138-138 = 180-138
4x = 42
4x/4 = 42/4
x = 21/2
x = 10.5
-----------------
Problem 36)
GD is the median of triangle ACG. It stretches from the vertex G to point D. Point D is the midpoint of segment AC
-----------------
Problem 37)
Segment AB is an altitude of triangle ACG. It is perpendicular to line CG (extend out segment CG) and it goes through vertex A.
-----------------
Problem 38)
triangle LMN = triangle PQR
LM = PQ
MN = QR
LN = PR
Since LM = PQ, we can say 2x+3 = 5x-15. Let's solve for x
2x+3 = 5x-15
2x-5x = -15-3
-3x = -18
x = -18/(-3)
x = 6
Similarly, MN = QR, so 9 = 3y+3
Solve for y
9 = 3y+3
3y+3 = 9
3y+3-3 = 9-3
3y = 6
3y/3 = 6/3
y = 2
-----------------
Problem 40)
The remote interior angles (2x and 21) add up to the exterior angle (3x-8)
2x+21 = 3x-8
2x-3x = -8-21
-x = -29
x = 29
-----------------
Problem 41)
For any quadrilateral, the four angles always add to 360 degrees
J+K+L+M = 360
3x+45+2x+45 = 360
5x+90 = 360
5x+90-90 = 360-90
5x = 270
5x/5 = 270/5
x = 54
Use this to find L
L = 2x
L = 2*54
L = 108
-----------------
Problem 42)
The adjacent or consecutive angles are supplementary. They add to 180 degrees
K+N = 180
2x+40 = 180
2x+40-40 = 180-40
2x = 140
2x/2 = 140/2
x = 70
-----------------
Problem 43)
All sides of the rhombus are congruent, so WX = WZ.
Triangle WPZ is a right triangle (right angle at point P).
Use the pythagorean theorem to find PW
a^2+b^2 = c^2
(PW)^2+(PZ)^2 = (WZ)^2
(PW)^2+256 = 400
(PW)^2+256-256 = 400-256
(PW)^2 = 144
PW = sqrt(144)
PW = 12
WY = 2*PW
WY = 2*12
WY = 24
Answer:
b = 0
Step-by-step explanation:
x -3 (2x-3) + 5x = bx + 9
x - 6x +9 + 5x = bx + 9
-9 -9
x - 6x + 5x = bx
-5x + 5x = bx
0 = bx
b/x 0/x
b = 0





Seems like "6x+5=4x+5" has only one solution that's 0.