Answer:
8.37 grams
Explanation:
The balanced chemical equation is:
C₆H₁₂O₆ ⇒ 2 C₂H₅OH (l) + 2 CO₂ (g)
Now we are asked to calculate the mass of glucose required to produce 2.25 L CO₂ at 1atm and 295 K.
From the ideal gas law we can determine the number of moles that the 2.25 L represent.
From there we will use the stoichiometry of the reaction to determine the moles of glucose which knowing the molar mass can be converted to mass.
PV = nRT ⇒ n = PV/RT
n= 1 atm x 2.25 L / ( 0.08205 Latm/kmol x 295 K ) =0.093 mol CO₂
Moles glucose required:
0.093 mol CO₂ x ( 1 mol C₆H₁₂O₆ / 2 mol CO₂ ) = 0.046 mol C₆H₁₂O₆
The molar mass of glucose is 180.16 g/mol, then the mass required is
0.046 mol x 180.16 g/mol = 8.37 g
Answer:
C
Explanation: a is incorrect since the lower the ph = more acidic and b is incorrect because it produces hydronium ion and d I’m not sure what it is but I no that base recieve the protons
Answer is: concentration ammonia is higher than concentration of ammonium ion.
Chemical reaction of ammonia in water: NH₃ + H₂O → NH₄⁺ + OH⁻.
Kb(NH₃) = 1,8·10⁻⁵.
c₀(NH₃) = 0,8 mol/L.
c(NH₄⁺) = c(OH⁻) = x.
c(NH₃) = 0,8 mol/L - x.
Kb = c(NH₄⁺) · c(OH⁻) / c(NH₃).
0,000018 = x² / 0,8 mol/L - x.
solve quadratic equation: x = c(NH₄⁺) = 3,79·10⁻³ mol/L.