Answer :
The atomic mass is the sum of the number of protons and neutrons in the nucleus of an atom.
Explanation :
Atomic number : it is defined as the number of protons or number of electrons.
Atomic number = number of protons = number of electrons
Mass number or atomic mass : It is defined as the sum of the number of protons and the number of neutrons.
Mass number or atomic mass = Number of protons + Number of neutrons
For example :
Number of protons in carbon = 6
Number of neutrons in carbon = 6
Mass number or atomic mass = Number of protons + Number of neutrons
Mass number or atomic mass = 6 + 6
Mass number or atomic mass = 12
Thus, the atomic mass is the sum of the number of protons and neutrons in the nucleus of an atom.
Answer:
97% of earth's water is in the ocean. The rest could be found underground, in glaciers and ice, and in rivers and lakes
Answer:
As the amplitude of pendulum motion increases, the period lengthens, because the restoring force −mgsinθ increases more slowly than −mgθ (sinθ≅θ−θ3/3!for small angles).
Explanation :
As we know that Mendeleev arranged the elements in horizontal rows and vertical columns of a table in order of their increasing relative atomic weights.
He placed the elements with similar nature in the same group.
According to the question, the atomic weight of iodine is less than the atomic weight of tellurium. So according to this, iodine should be placed before tellurium in Mendeleev's tables. But Mendeleev placed iodine after tellurium in his original periodic table.
However, iodine has similar chemical properties to chlorine and bromine. So, in order to make iodine queue up with chlorine and bromine in his periodic table, Mendeleev exchanged the positions of iodine and tellurium.
As we know that the positions of iodine and tellurium were reversed in Mendeleev's table because iodine has one naturally occurring isotope that is iodine-127 and tellurium isotopes are tellurium-128 and tellurium-130.
Due to high relative abundance of tellurium isotopes gives tellurium the greater relative atomic mass.