Answer:
x^4-3x^3+x^2-4
Step-by-step explanation:
Given the following functions
R(x) = 2x^4 – 3x^3 + 2x – 1 and
C(x) = x^4 – x^2 + 2x + 3
We are to find the profit function P(x)
P(x) = R(x) - C(x)
P(x) = 2x^4 – 3x^3 + 2x – 1 - ( x^4 – x^2 + 2x + 3)
P(x) = 2x^4 – 3x^3 + 2x – 1 - x^4 + x^2 - 2x - 3
Collect the like terms
P(x) = 2x^4-x^4-3x^3+x^2+2x-2x-1-3
P(x) = x^4-3x^3+x^2+0-4
P(x) = x^4-3x^3+x^2-4
Hence the required profit function P(x) is x^4-3x^3+x^2-4
x+x+y.y.y = 2x+y^3 ( y cube)
So, The answer is (d)
Answer:
15/32
Step-by-step explanation:
-8 because it falls under zero in the number line and the rest dont