We want to study the impact of a sledgehammer and a wall.
Before the sledgehammer hits the wall, it has a given velocity and a given mass, so it has momentum and it has kinetic energy.
When it hits the wall, the velocity of the hammer disappears, this means that the energy is transferred to the wall, this "transfer of energy" can be thought of a force applied for a really short time on the wall, which for the third law of Newton, the force is also applied on the hammer.
This is why you feel the impact on the handle when you hit something with a hammer, this also means that some of the energy is dissipated on your arms.
Now, because the wall is made of a material usually not as strong as the head of the sledgehammer, we will see that in this interaction the wall seems more affected than the hammer, but the forces that each one experiences are exactly equal in magnitude.
If you want to learn more, you can read:
brainly.com/question/13952508
 
        
             
        
        
        
<u>Answer</u>
3.44 m/s
<u>Explanation</u>
The motion apply the equations of Newton's law of motion. The ball is acceleration is -9.8 m/s² (acceleration due to gravity. It is negative because the ball is going against gravity, so it is decelerating).
The first equation of Newton's law of motion is;
V = U + at
Where V is the final velocity, U is the initial velocity, a is acceleration and t the time taken.
V = 25 + (-9.8 × 2.2)
     = 25 - 21.56
      = 3.44 m/s
 
        
             
        
        
        
Keplers laws states that planets sweep areas in equal times is second