In component form, the displacement vectors become
• 350 m [S] ==> (0, -350) m
• 400 m [E 20° N] ==> (400 cos(20°), 400 sin(20°)) m
(which I interpret to mean 20° north of east]
• 550 m [N 10° W] ==> (550 cos(100°), 550 sin(100°)) m
Then the student's total displacement is the sum of these:
(0 + 400 cos(20°) + 550 cos(100°), -350 + 400 sin(20°) + 550 sin(100°)) m
≈ (280.371, 328.452) m
which leaves the student a distance of about 431.8 m from their starting point in a direction of around arctan(328.452/280.371) ≈ 50° from the horizontal, i.e. approximately 431.8 m [E 50° N].
I'm guessing they rounded because it is technically 2.998 X 108 miles/hour
so I would go with true!
To solve this problem it is necessary to apply the concepts of Work. Work is understood as the force applied to travel a determined distance, in this case the height. The force in turn can be expressed by Newton's second law as the ratio between mass and gravity, as well

Where,
m = mass
h = height
g = Gravitational constant
When it ascends to the second floor it has traveled the energy necessary to climb a height, under this logic, until the 4 floor has traveled 3 times the height h of each of the floors therefore

Replacing in our equation we have to

The correct answer is 4.
Answer:
10000N
Explanation:
Given parameters:
Mass of the car = 1000kg
Acceleration = 3m/s²
g = 10m/s²
Unknown:
Weight of the car = ?
Solution:
To solve this problem we must understand that weight is the vertical gravitational force that acts on a body.
Weight = mass x acceleration due to gravity
So;
Weight = 1000 x 10 = 10000N
The correct answer (sample response) is:
The image seems to be behind the mirror, but nothing is really there.
Include the following in your response:
The image appears to be behind the mirror.
If someone looks behind the mirror, there is no image there.
