Answer:
The distance from the base of the ladder to the base of the house is 10ft
Step-by-step explanation:
From the question, we can gather that the ladder makes a right angle shape with the wall of the house.
The length of this ladder which represents the hypotenuse of the right angled triangle is 26ft while the height of the house to the roof is 24ft
To calculate the distance between the base of the ladder and the base of the house, we shall be employing the use of Pythagoras’ theorem which states that the square of the hypotenuse equals the sum of the square of the 2 other sides
We have established that the hypotenuse is the length of the ladder which is 26ft
Let the distance we want to calculate be d
26^2 = 24^2 + d^2
d^2 = 26^2 -24^2
d^2 = 676 - 576
d^2 = 100
d = square root of 100
d = 10ft
Ok, here is what I got:
<span>9/20 is .45 so D is right for sure. C is also correct since the remaining % is 55 ( meaning the percent you won't win) this is also the same as A which is 11/20 or .55. again meaning that .55 is the probability that you won't win. I hope this helps!</span>
Answer:
x = 21
Step-by-step explanation:
Because GJ is a diameter, the angle K is a right angle (90 degrees).
Thus, 4x + 6 = 90, and 4x = 84. Thus, x = 21
![\bf \begin{cases} x=3\implies &x-3=0\\ x=1+3i\implies &x-1-3i=0\\ x=1-3i\implies &x-1+3i=0 \end{cases} \\\\[-0.35em] ~\dotfill\\\\ (x-3)(x-1-3i)(x-1+3i)=0 \\\\\\ (x-3)\underset{\textit{difference of squares}}{([x-1]-3i)([x-1]+3i)}=0\implies (x-3)([x-1]^2-[3i]^2)=0 \\\\\\ (x-3)([x^2-2x+1]-[3^2i^2])=0\implies (x-3)([x^2-2x+1]-[9(-1)])=0](https://tex.z-dn.net/?f=%5Cbf%20%5Cbegin%7Bcases%7D%20x%3D3%5Cimplies%20%26x-3%3D0%5C%5C%20x%3D1%2B3i%5Cimplies%20%26x-1-3i%3D0%5C%5C%20x%3D1-3i%5Cimplies%20%26x-1%2B3i%3D0%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%28x-3%29%28x-1-3i%29%28x-1%2B3i%29%3D0%20%5C%5C%5C%5C%5C%5C%20%28x-3%29%5Cunderset%7B%5Ctextit%7Bdifference%20of%20squares%7D%7D%7B%28%5Bx-1%5D-3i%29%28%5Bx-1%5D%2B3i%29%7D%3D0%5Cimplies%20%28x-3%29%28%5Bx-1%5D%5E2-%5B3i%5D%5E2%29%3D0%20%5C%5C%5C%5C%5C%5C%20%28x-3%29%28%5Bx%5E2-2x%2B1%5D-%5B3%5E2i%5E2%5D%29%3D0%5Cimplies%20%28x-3%29%28%5Bx%5E2-2x%2B1%5D-%5B9%28-1%29%5D%29%3D0)
[ correction added, Thanks to @stef68 ]
![\bf (x-3)([x^2-2x+1]+9)=0\implies (x-3)(x^2-2x+10)=0 \\\\\\ x^3-2x^2+10x-3x^2+6x-30=0\implies x^3-5x^2+16x-30=f(x) \\\\\\ \stackrel{\textit{applying a translation with a -2f(x)}}{-2(x^3-5x^2+16x-30)=f(x)}\implies -2x^3+10x^2-32x+60=f(x)](https://tex.z-dn.net/?f=%5Cbf%20%28x-3%29%28%5Bx%5E2-2x%2B1%5D%2B9%29%3D0%5Cimplies%20%28x-3%29%28x%5E2-2x%2B10%29%3D0%20%5C%5C%5C%5C%5C%5C%20x%5E3-2x%5E2%2B10x-3x%5E2%2B6x-30%3D0%5Cimplies%20x%5E3-5x%5E2%2B16x-30%3Df%28x%29%20%5C%5C%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Bapplying%20a%20translation%20with%20a%20-2f%28x%29%7D%7D%7B-2%28x%5E3-5x%5E2%2B16x-30%29%3Df%28x%29%7D%5Cimplies%20-2x%5E3%2B10x%5E2-32x%2B60%3Df%28x%29)