The distance between two points on the plane is given by the formula below
![\begin{gathered} A=(x_1,y_1),B=(x_2,y_2) \\ \Rightarrow d(A,B)=\sqrt[]{(x_1-x_2)^2+(y_1-y_2)^2} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20A%3D%28x_1%2Cy_1%29%2CB%3D%28x_2%2Cy_2%29%20%5C%5C%20%5CRightarrow%20d%28A%2CB%29%3D%5Csqrt%5B%5D%7B%28x_1-x_2%29%5E2%2B%28y_1-y_2%29%5E2%7D%20%5Cend%7Bgathered%7D)
Therefore, in our case,

Thus,
![\begin{gathered} \Rightarrow d(A,B)=\sqrt[]{(-1-5)^2+(-3-2)^2}=\sqrt[]{6^2+5^2}=\sqrt[]{36+25}=\sqrt[]{61} \\ \Rightarrow d(A,B)=\sqrt[]{61} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20%5CRightarrow%20d%28A%2CB%29%3D%5Csqrt%5B%5D%7B%28-1-5%29%5E2%2B%28-3-2%29%5E2%7D%3D%5Csqrt%5B%5D%7B6%5E2%2B5%5E2%7D%3D%5Csqrt%5B%5D%7B36%2B25%7D%3D%5Csqrt%5B%5D%7B61%7D%20%5C%5C%20%5CRightarrow%20d%28A%2CB%29%3D%5Csqrt%5B%5D%7B61%7D%20%5Cend%7Bgathered%7D)
Therefore, the answer is sqrt(61)
In general,

Remember that

Therefore,
Answer:
11
Step-by-step explanation:
Answer:
Step-by-step explanation:
Sec B
1) 5p⁻³ = 8*5⁻²
p⁻³ = 2³*5⁻²/5
p⁻³ =2³*5⁻³ { 1/a^m = a^-m}
p⁻³ = 5⁻³ /2⁻³ {a^m = 1/a^-m}
p⁻³ = (5/2)⁻³
p= 5/2
2) 4x² = 81
x² = 81/4
x² = 9² /2²
x² =(9/2)²
x = 9/2
3) 9^x/3 =81
9^x/3 = 9^2
Comparing the powers, x/3 = 2
x = 2*3 =6
x = 6
Answer:
u=0.375
Step-by-step explanation:
First we can write the equation down, -6(-4u+4)-6u=2(u-5)-8. First what you want to do is distribute -6 to (4u+4) and 2 to (u-5). This would result in 24u-24-6u=2u-10-8. Next add up all like terms and you will get 18u-24=2u-18. Next you would want to add 24 on both sides so that you get 18u=2u+6 then subtract 2u from both sides to get 16u=6. You the divide 16 on both sides to get u=0.375.