The state of atoms in a neon light when light is emitted is loss of energy.
Answer:
1.87x10⁻³ M SO₄²⁻
Explanation:
The reaction of SO₄²⁻ with Ba²⁺ (From Ba(NO₃)₂) is:
SO₄²⁻(aq) + Ba²⁺(aq) → BaSO₄(s)
<em>Where 1 mole of SO₄²⁻ reacts per mole of Ba²⁺</em>
<em />
To reach the end point in this titration, we need to add the same moles of Ba²⁺ that the moles that are of SO₄²⁻.
Thus, to find molarity of SO₄²⁻ we need to find first the moles of Ba²⁺ added (That will be the same of SO₄²⁻). And as the volume of the initial sample was 100mL we can find molarity (As ratio of moles of SO₄²⁻ per liter of solution).
<em>Moles Ba²⁺:</em>
7.48mL = 7.48x10⁻³L ₓ (0.0250moles / L) = 1.87x10⁻⁴ moles of Ba²⁺ = Moles of SO₄²⁻
<em>Molarity SO₄²⁻:</em>
As there are 1.87x10⁻⁴ moles of SO₄²⁻ in 100mL = 0.1L, molarity is:
1.87x10⁻⁴ moles of SO₄²⁻ / 0.1L =
<h3> 1.87x10⁻³ M SO₄²⁻</h3>
Answer:
0.2598 M
Explanation:
Molarity is mol/L, so we have to convert the grams to moles and the mL to L. To convert between grams and moles you need the molar mass of the compound, which is 36.46g/mol.



Round to the lowest number of significant figures = 0.2598 M
Answer:
16
Explanation:
Protons have a positive net charge,
Neutrons being neutral don't have a net charge.
Each proton is one extra net charge if you have 16 of them and the neutrons don't affect your net charge you will have 16.