First row: HCl, ZnCl2, FeCl3, AlCl3, BaCl2, PbCl4
Second row: H3P, Zn3P2, FeP, AlP, Ba3P2, Pb3P4
Third row: HNO3, Zn(NO3)2, Fe(NO3)3, Al(NO3)3, Ba(NO3)2, Pb(NO3)4
Fourth row: ZnO, Fe2O3, Al2O3, BaO, PbO2
Fifth row: HCaF2, Zn(CaF2)2, Fe(CaF2)3, Al(CaF2)3, Ba(CaF2)2, Pb(CaF2)4
Sixth row: H2SO4, ZnSO4, Fe2(SO4)3, Al2(SO4)3, BaSO4, Pb(SO4)2
2000 BC and was found in tubes in Egyptian tombs dated from 1500BC
hope this helps
The answer is 33.33 %
The explanation:
According to the reaction equation:
MgCO3(s) + 2HCl (aq) --> MgCl2(aq) + H20(l) + CO2(g)
we can see that 1 mole of MCO3 will produce → 1 mole of CO2
-Now we need o get number of mole of CO2:
and when we have 0.22 g of CO2, so number of mole = mass / molar mass
moles = 0.22 g / 44 g/mol = 0.005 mole
∴ moles of Mg = moles of CO2 = 0.005 mole
∴ mass of Mg = moles * molar mass
= 0.005 * 84 /mol = 0.42 g
∴ Percent of MgCO3 by mass of Mg = 0.42 g / 1.26 * 100
= 33.33 %
Answer:
The one above B
Explanation:
The one above B is most represents a compound because compounds are chemically bonded and are always near each other.
The complete question is as follows: Which statement describes the way in which energy moves between a system reacting substances in the surroundings.
A) molecule Collisions transfer thermal energy between the system and its surroundings
B) The thermal energy of the system and it’s surroundings increase
C) The potential energy of the system and it’s surroundings increases
D) molecular collisions create energy that is then released into the surroundings
Answer: The statement, molecule Collisions transfer thermal energy between the system and its surroundings describes the way in which energy moves between a system reacting substances in the surroundings.
Explanation:
When there will occur an increase in kinetic energy of molecules then there will occur more number of collisions.
When kinetic energy between these molecules tends to decrease then they will release heat energy into their surroundings.
As a result, it means that molecule collisions transfer thermal energy between the system and its surroundings.
Thus, we can conclude that the statement molecule Collisions transfer thermal energy between the system and its surroundings describes the way in which energy moves between a system reacting substances in the surroundings.