Question:
<span>A sample of nitrogen gas had a volume of 500mL, a pressure in its closed container of 740 torr and a temperature of 25°c. what was the volume of gas when the temperature was changed to 50°c and the new pressure was 760 torr?
Answer:
Data Given:
V</span>₁ = 500 mL
P₁ = 740 torr
T₁ = 25 °C + 273 = 298 K
V₂ = ?
P₂ = 760 torr
T₂ = 50 °C + 273 = 323 K
Solution:
Let suppose the gas is acting Ideally, then According to Ideal Gas Equation,
P₁ V₁ / T₁ = P₂ V₂ / T₂
Solving for V₂,
V₂ = (P₁ V₁ T₂) ÷ (T₁ P₂)
Putting Values,
V₂ = (740 torr × 500 mL × 323 K) ÷ (298 K × 760 torr)
V₂ = 527.68 mL
Answer: gas molecules will hit the container walls more frequently and with greater force
Explanation:
According to the postulates of kinetic molecular theory:
1. The pressure exerted by a gas in a container results from collisions between the gas molecules and the container walls.
2. The average kinetic energy of the gas molecules is proportional to the kelvin temperature of the gas.
When the temperature is increased, so the average kinetic energy and the rms speed also increase. This means that the gas molecules will hit the container walls more frequently and with greater force because they are all moving faster. This increase the pressure.
You would find the highest pressure at the bottom
Each mole of substance contains 6.02 x <span>1023</span> component parts, in this case water molecules.
If you have 2.3 moles of water you will have 2.3 x 6.02 x <span>1023</span> which is 1.3846 x <span>1024</span> molecules.
Each molecule contains 2 hydrogen atoms, so the total number of hydrogen atoms in 2.3 moles of water will be 2 x 1.3846 x <span>1024</span> = 2.7692 x <span>1024</span>.
Please mark brainliest, thanks :)
Diffusion of one state of matter into another: Solid can diffuse in liquid. When sugar is added to water, whole water becomes sweet without stirring it because of diffusion of sugar into water. ... Carbon dioxide and oxygen are the two gases in air which dissolves in water by diffusion.