Okay so you have to start by working out how many times you multiply 5 by itself to get 125.
5x5x5=125
therefore: (5^3)^2x) is the answer:)
My estimate is 177 inches i guess
Answer:
Step-by-step explanation:
Answer:
(1, 4) and (1,3), because they have the same x-value
Step-by-step explanation:
For a relation to be regarded as a function, there should be no two y-values assigned to an x-value. However, two different x-values can have the same y-values.
In the relation given in the equation, the ordered pairs (1,4) and (1,3), prevent the relation from being a function because, two y-values were assigned to the same x-value. x = 1, is having y = 4, and 3 respectively.
Therefore, the relation is not a function anymore if both ordered pairs are included.
<em>The ordered pairs which make the relation not to be a function are: "(1, 4) and (1,3), because they have the same x-value".</em>
(a).
The product of two binomials is sometimes called FOIL.
It stands for ...
the product of the First terms (3j x 3j)
plus
the product of the Outside terms (3j x 5)
plus
the product of the Inside terms (-5 x 3j)
plus
the product of the Last terms (-5 x 5)
FOIL works for multiplying ANY two binomials (quantities with 2 terms).
Here's another tool that you can use for this particular problem (a).
It'll also be helpful when you get to part-c .
Notice that the terms are the same in both quantities ... 3j and 5 .
The only difference is they're added in the first one, and subtracted
in the other one.
Whenever you have
(the sum of two things) x (the difference of the same things)
the product is going to be
(the first thing)² minus (the second thing)² .
So in (a), that'll be (3j)² - (5)² = 9j² - 25 .
You could find the product with FOIL, or with this easier tool.
______________________________
(b).
This is the square of a binomial ... multiplying it by itself. So it's
another product of 2 binomials, that both happen to be the same:
(4h + 5) x (4h + 5) .
You can do the product with FOIL, or use another little tool:
The square of a binomial (4h + 5)² is ...
the square of the first term (4h)²
plus
the square of the last term (5)²
plus
double the product of the terms 2 · (4h · 5)
________________________________
(c).
Use the tool I gave you in part-a . . . twice .
The product of the first 2 binomials is (g² - 4) .
The product of the last 2 binomials is also (g² - 4) .
Now you can multiply these with FOIL,
or use the squaring tool I gave you in part-b .