Assuming acceleration due to gravity of the moon is constant and there’s no initial velocity in the mans jump we can use one of the kinematic equations. x(final)=x(initial)+(1/2)gt^2. Plug in known values. 0=10-(1.62/2)t^2. The value 1.62 is acceleration of gravity on the moon. Now simply solve for t. t=3.513
Distance of fall from rest,
without air resistance = (1/2) (gravity) (time)²
= (1/2) (9.8 m/s²) (95 sec)²
= (4.9 m/s²) (9,025 sec²)
= 44,222.5 meters .
The depth of the mine shaft is five times the height of Mt. Everest !
red goes to red, black goes to white, yellow goes to green, blue goes to blue.
You are talking about make sure's and pearl substance I thought you was talking about mix in with something
Answer:
434 Hz
Explanation:
According to the Doppler effect, when a source of a wave is moving towards an observer at rest, then the observer will observe an apparent frequency which is higher than the original frequency of the source.
In this situation, Tina is driving towards Rita. Tina is the source of the sound wave (the horn), while RIta is the observer. Since the original frequency of the sound is 400 Hz, Rita will hear a sound with a frequency higher than this value.
The only choice which is higher than 400 Hz is 434 Hz, so this is the frequency that Rita will hear.