Answer:
0.5A
Explanation:
Using
,
R is the resistance (in Ohms)
V is the voltage (in V)
I is the current (in A)

I = 0.5A
Answer:
Mc = 1920[lb*in]
Explanation:
Para poder solucionar este problema debemos realizar un análisis estático, por tal motivo lo primero es realizar un diagrama de cuerpo libre con las respectivas fuerzas actuando sobre la barra ABC. DE igual manera calcular la geometría de la configuración mostrada.
El diagrama de cuerpo libre se puede ver en la imagen adjunta, con la solución de este problema.
Lo primero es determinar el angulo t, el cual por medio de las propiedades del triangulo rectángulo se puede determinar.
Con este angulo (t) ya determinado, fijamos la atención en el triangulo BCD, este triangulo no es rectángulo, pero por medio de la ley de senos podemos determinar el angulo omega.
Después de determinar el angulo omega, restamos el angulo (t) para poder determinar el angulo (a).
Seguidamente realizamos una sumatoria de momentos alrededor del punto C, utilizado las respectivas fuerzas con los ángulos descompuestos.
El momento en el punto C es de 1920 [Lb*in].
Nota: ya que no se menciona la fuerza en el punto A, esta se desprecia y no se tiene en cuenta en los calculos. En la imagen adjunta se puede ver el procedimiento desarrollado.
They are not the same event in that they occur in different places and times in most frames of reference. In the photon's frame they are not separated in either space nor time because photons don't experience time and at least mathematically all points on the spacetime manifold are the same point to a photon. What the zero spacetime interval can tell us though, is that the events are connected by a light beam (light-like separation). There is as much time between the events as there is space and one event can conceptually cause the other. They are on the cusp between time-like and space-like events.
<span>The observation or measurement of physical properties of matter does not change its composition or its chemical nature. Other examples of physical properties include the infrared spectrum, attraction or repulsion to magnets, viscosity and opacity.</span>
Answer:
the diver's speed is independent of the launch height.
Explanation:
For this exercise we must use Newton's second law
fr - W = m a
the friction force has the general form
fr = b v
Let's analyze this equation to find out what happens with the speed of the distant club.
When jumping, the initial speed is zero, so the friction force is zero and has an acceleration equal to the acceleration of gravity, as the speed increases the friction force increases decreasing the acceleration until it becomes zero, when it arrives at this value the velocity it has is called terminal velocity and this velocity remains fixed in relation to the trajectory.
fr = W
v = cte
The distance or time in which this equilibrium is reached is relatively fast, so the diver's speed is independent of the launch height.