Answer:
The distance traveled by the woman is 34.1m
Explanation:
Given
The initial height of the cliff
yo = 45m final, positition y = 0m bottom of the cliff
y = yo + ut -1/2gt²
u = 20.0m/s initial speed
g = 9.80m/s²
0 = 45.0 + 20×t –1/2×9.8×t²
0 = 45 +20t –4.9t²
Solving quadratically or by using a calculator,
t = 5.69s and –1.61s byt time cannot be negative so t = 5.69s
So this is the total time it takes for the ball to reach the ground from the height it was thrown.
The distance traveled by the woman is
s = vt
Given the speed of the woman v = 6.00m/s
Therefore
s = 6.00×5.69 = 34.14m
Approximately 34.1m to 3 significant figures.
Answer:
0.76
Explanation:
we are given:
radius (r) =5.7 m
speed (s) = 1 revolution in 5.5 seconds
acceleration due to gravity (g) = 9.8 m/s^{2}
coefficient of friction (Uk) = ?
we can get the minimum coefficient of friction from the equation below
centrifugal force = frictional force
m x r x ω^{2} = Uk x m x g
r x ω^{2} = Uk x g
Uk = 
where ω (angular velocity) = 
=
= 1.14
Uk =
= 0.76
it can be said that the speed of the east wind is
v=0.3608m/s
From the question we are told
A small boat sailed <u>straight </u>north out of a harbor in <em>strong </em>east wind (blowing from west to east).
After sailing for 120 minutes, it ended up hitting a buoy 60^\circ60 ∘ to the north-east of the harbor. If the straight-line distance between the buoy and the harbor is 3 km,
- what is the speed of the east wind?.
<h3> the speed of the east wind</h3>
Generally the equation for the distance is mathematically given as
BA=3000sin60
BA=2598.07m
Therefore
the speed of the east wind

v=0.3608
For more information on this visit
brainly.com/question/22568180
Assuming you're working in a 3D cartesian coordinate system, i.e. each point in space has an x, y, and z coordinate, you add up the forces' x/y/z components to find the resultant force.