the answer to your question is 15 :)
I think it's a) 1st Newton's law... so sorry if it's wrong...
Answer:
(a) 2.85 m
(b) 16.5 m
(c) 21.7 m
(d) 22.7 m
Explanation:
Given:
v₀ₓ = 19 cos 71° m/s
v₀ᵧ = 19 sin 71° m/s
aₓ = 0 m/s²
aᵧ = -9.8 m/s²
(a) Find Δy when t = 3.5 s.
Δy = v₀ᵧ t + ½ aᵧ t²
Δy = (19 sin 71° m/s) (3.5 s) + ½ (-9.8 m/s²) (3.5 s)²
Δy = 2.85 m
(b) Find Δy when vᵧ = 0 m/s.
vᵧ² = v₀ᵧ² + 2 aᵧ Δy
(0 m/s)² = (19 sin 71° m/s)² + 2 (-9.8 m/s²) Δy
Δy = 16.5 m
(c) Find Δx when t = 3.5 s.
Δx = v₀ₓ t + ½ aₓ t²
Δx = (19 cos 71° m/s) (3.5 s) + ½ (0 m/s²) (3.5 s)²
Δx = 21.7 m
(d) Find Δx when Δy = 0 m.
First, find t when Δy = 0 m.
Δy = v₀ᵧ t + ½ aᵧ t²
(0 m) = (19 sin 71° m/s) t + ½ (-9.8 m/s²) t²
0 = t (18.0 − 4.9 t)
t = 3.67
Next, find Δx when t = 3.67 s.
Δx = v₀ₓ t + ½ aₓ t²
Δx = (19 cos 71° m/s) (3.67 s) + ½ (0 m/s²) (3.67 s)²
Δx = 22.7 m
The magnitude of the force exerted by the left cube on the right cube is 17.64N.
<h3>What is frictional force?</h3>
When an object is moving on a rough surface, it experiences opposition. This opposing force is called the friction.
Two identical 3.0-kg cubes are placed on a horizontal surface in contact with one another. The cubes are lined up from left to right and a force F₁ is applied to the left side of the left cube causing both cubes to move at a constant speed v. The coefficient of kinetic friction between the cubes and the surface is 0.3.
From the equilibrium of forces in vertical direction
Normal force N= 2m x g
friction force f = μN =μ(2m)g
From the equilibrium of forces in horizontal direction
F₁ =ma =0
using Newton's third law of motion, we get
F₁ - f =0
F₁ =f = μ(2m)g
Put the values, we get
F₁ = 17.64N
Thus, magnitude of the force exerted by the left cube on the right cube is 17.64N.
Learn more about friction force.
brainly.com/question/1714663
#SPJ1