Where are the images?!?!?
Answer:
(a) 
(b) 
Explanation:
(a) The surface current density of a conductor is the current flowing per unit length of the conductor.

Considering a wire, the current is uniformly distributed over the circumferenece of the wire.

The radius of the wire = a

The surface current density 
(b) The current density is inversely proportional
......(1)
k is the constant of proportionality

........(2)
substituting (1) into (2)





substitute 

Answer:
The value of the average convection coefficient is 20 W/Km².
Explanation:
Given that,
For first object,
Characteristic length = 0.5 m
Surface temperature = 400 K
Atmospheric temperature = 300 K
Velocity = 25 m/s
Air velocity = 5 m/s
Characteristic length of second object = 2.5 m
We have same shape and density of both objects so the reynold number will be same,
We need to calculate the value of the average convection coefficient
Using formula of reynold number for both objects



Here, 


Put the value into the formula


Hence, The value of the average convection coefficient is 20 W/Km².
If you soak this egg shell in vinegar (which is about 4% acetic acid), you start a chemical reaction that dissolves the calcium carbonate shell. The acetic acid reacts with the calcium carbonate in the egg shell and releases carbon dioxide gas that you see as bubbles on the shell.
The two forces of gravity are equal
Explanation:
We can answer this question by applying Newton's third law of motion, which states that:
"When an object A exerts a force (called action) on an object B, then object B exerts an equal and opposite force (called reaction) on object A"
In this problem, we can identify the Sun as object A and the Earth as object B. This means that the force of gravity exerted by the Sun on the Earth is the action, while the force of gravity exerted by the Earth on the Sun is the reaction: according to Newton's third law, these two forces are equal and opposite.
Therefore, the two forces of gravity are equal in magnitude, which is given by:

where
G is the gravitational constant
M is the mass of the Sun
m is the mass of the Earth
r is the separation between the Earth and the Sun
Learn more about Newton's third law:
brainly.com/question/11411375
#LearnwithBrainly