The missing part of the incomplete question is given below:
Which important step of scientific design is Shameka conducting?
repetition
replication
verification of results
using controlled variables
Answer:
Verification of results
Explanation:
The way toward gathering five examples of water from various sources is conveyed to confirm the outcome. By gathering water from five distinct areas of a similar source the analyst can genuinely find out the nature of the water in her region of remain.
On the off chance that after examples are tried it is found the water isn't sound, the outcomes would be acknowledged as it has been appropriately checked and a proper move would be made.
Thus, the correct answer is - verification of results
The voltage exists between the fence and the ground. The cow is grounded. The cow is touching the ground, completing the circuit of electricity. <span>When the cow comes into contact with the fence, it becomes an electric ground which sends an electric current into the cow, through the cow, and into the ground. The pain experienced from the shock is due to the current that flows through the cow.</span>
It must be a virtual image, because this is the only kind of image it can produce.
Supposing there's no air
resistance, horizontal velocity is constant, which makes it very easy to solve
for the amount of time that the rock was in the air.
Initial horizontal
velocity is: <span>
cos(30 degrees) * 12m/s = 10.3923m/s
15.5m / 10.3923m/s = 1.49s
So the rock was in the air for 1.49 seconds. </span>
<span>
Now that we know that, we can use the following kinematics
equation:
d = v i * t + 1/2 * a * t^2
Where d is the difference in y position, t is the time that
the rock was in the air, and a is the vertical acceleration: -9.80m/s^2. </span>
<span>
Initial vertical velocity is sin(30 degrees) * 12m/s = 6 m/s
So:
d = 6 * 1.49 + (1/2) * (-9.80) * (1.49)^2
d = 8.94 + -10.89</span>
d = -1.95<span>
<span>This means that the initial y position is 1.95 m higher than
where the rock lands. </span></span>
Answer:
P_2 = 1.62 atm
Explanation:
We know the formula for the rms speed of the ideal gas is given by

P= pressure of the surrounding
V= volume of the vessel
m= mass of the gas
Now, From this formula rms speed (v_rms) is directly proportional to square root is pressure.
Then

given that v_rsm,1= v0
and v_rsm,2=0.9v0
putting these values we get

P_2 = 1.62 atm