<span>Flexibility exercises should be done in conjunction with strength-building exercises because:
</span><span>They work together to maintain your overall level of fitness.
</span>
I hope my answer has come to your help. God bless and have a nice day ahead!
The gentleman bug's angular speed is the same as the ladybug's (1 rev/s)
Answer:
0.0034 sec
Explanation:
L = initial length
T = initial time period = 2.51 s
Time period is given as


L = 1.56392 m
L' = new length
ΔT = Rise in temperature = 142 °C
α = coefficient of linear expansion = 19 x 10⁻⁶ °C
New length due to rise of temperature is given as
L' = L + LαΔT
L' = 1.56392 + (1.56392) (19 x 10⁻⁶) (142)
L' = 1.56814 m
T' = New time period
New time period is given as


T' = 2.5134 sec
Change in time period is given as
ΔT = T' - T
ΔT = 2.5134 - 2.51
ΔT = 0.0034 sec
it was too much water inside the clouds and the tornado happened
(a) No, because the mechanical energy is not conserved
Explanation:
The work-energy theorem states that the work done by the engine on the airplane is equal to the gain in kinetic energy of the plane:
(1)
However, this theorem is only valid if there are no non-conservative forces acting on the plane. However, in this case there is air resistance acting on the plane: this means that the work-energy theorem is no longer valid, because the mechanical energy is not conserved.
Therefore, eq. (1) can be rewritten as

which means that the work done by the engine (W) is used partially to increase the kinetic energy of the airplane (
) and part is lost because of the air resistance (
).
(b) 77.8 m/s
First of all, we need to calculate the net force acting on the plane, which is equal to the difference between the thrust force and the air resistance:

Now we can calculate the acceleration of the plane, by using Newton's second law:

where m is the mass of the plane.
Finally, we can calculate the final speed of the plane by using the equation:

where
is the final velocity
is the initial velocity
is the acceleration
is the distance travelled
Solving for v, we find
