Answer:
<em>Radius at liftoff 8.98 m</em>
Explanation:
At the working altitude;
maximum radius = 24 m
air pressure = 0.030 atm
air temperature = 200 K
At liftoff;
temperature = 349 K
pressure = 1 atm
radius = ?
<em>First, we assume balloon is spherical in nature,</em>
<em>and that the working gas obeys the gas laws.</em>
from the radius, we can find the volume of the balloon at working atmosphere.
Volume of a sphere = 
volume of balloon =
x 3.142 x
= 57913.34 m^3
using the gas equation,
= 
<em>The subscript 1 indicates the properties of the gas at working altitude, and the subscript 2 indicates properties of the gas at liftoff.</em>
imputing values, we have
= 
0.03 x 57913.34 x 349 = 200V2
V2 = 606352.67/200 = <em>3031.76 m^3 this is the volume occupied by the gas in the balloon at liftoff.</em>
from the formula volume of a sphere,
V =
=
x 3.142 x
= 3031.76
4.19
= 3031.76
= 3031.76/4.19
radius r of the balloon on liftoff =
= <em>8.98 m</em>
Answer:
Due to the resistance of air, a drag force acts on a falling body (parachute) to slow down its motion. Without air resistance, or drag, objects would continue to increase speed until they hit the ground. The larger the object, the greater its air resistance. Parachutes use a large canopy to increase air resistance. Also, Once the parachute is opened, the air resistance overwhelms the downward force of gravity. The net force and the acceleration on the falling skydiver is upward. An upward net force on a downward falling object would cause that object to slow down. The skydiver thus slows down. Sorry if not helpful.
If you and the source of sound are moving apart, then the pitch (frequency) <em>you hear</em> is <em>lower</em> than the pitch (frequency) that's actually leaving the source.
It doesn't matter whether you or the source is the one moving, only that the distance between you is increasing.