Answer:
Yes
Explanation: Electric and magnetic field are known to be inter-related, this implies that for any current carrying conductor there is a resulting magnetic field around the wire ( for example a current carrying conductor deflects a compass) and a magnetic field has been known to produce some amount current based on the<em> </em>principle of electromagnetic induction by Micheal Faraday.
The strength of magnetic field generated by a current carrying conductor is given by Bio-Savart law (purely mathematical) which is
B =
B= strength of magnetic field
I =current on conductor
r = distance on any point of the conductor relative to it center
If a current carrying could generate this magnitude of magnetic field, thus this magnetic field has the ability to interact (exert a force on any magnetic material) with any other magnetic material including a magnet.
Yes, a current carrying conductor can exert a force on a magnetic field
I think the correct answer is the third statement, electron from escaping from the tube containing the triode. The negative charge on the grid repels any electron in the tube. As a result,the flow of current is controlled. If the field is that strong, all current flow will stop resulting to maintaining the electron cloud in the tube.
Answer:
Change in the shape size volume and state of a substance
When a solid is heated, it turns into a liquid. As a liquid, a substance has a fixed volume, but its shape changes to fill the shape of its container. For instance, a glass of water is the liquid state of water. ... Gas expands to fill the shape and volume of its container.
Explanation:
Answer:
D.
Explanation:
Specifically, Special Relativity showed us that space and time are not independent of one another but can be mixed into each other and therefore must be considered as the same object, which we shall denote as space-time. The consequences of space/time mixing are: time dilation. and length contraction.
Answer:
This is your answer
Explanation:
Actually I took this from go ogle