Answer: 7.436 s
Explanation:
This situation is related to vertical motion, specifically free fall and can be modelled by the following equation:
Where:
is the final height of the object (when it makes splash)
is the initial height of the object
is the initial velocity of the object (it was dropped)
is the acceleration due gravity (directed downwards)
is the time since the objecct is dropped until it makes splash
Clearing
:
Finally:
Answer:Sound travel faster in warm room.
Explanation:The speed of sound depends on the temperature of the medium. Mathematically, the relation between the speed of the sound and the temperature is give by:v=
is the ratio of the specific heats
R is the gas constant
T is the temperature of the medium
We know that the temperature of the warm room is more as compared to the cold room.
So, it is clear that the sound travel faster in a warm room. The particles move faster when the temperature is high.
If a car crashes into another car like this, the wreck should go nowhere. Besides this being an unrealistic question, the physics of it would look like this:
Momentum before and after the collision is conserved.
Momentum before the collision:
p = m * v = 50000kg * 24m/s + 55000kg * 0m/s = 50000kg * 24m/s
Momentum after the collision:
p = m * v = (50000kg + 55000kg) * v
Setting both momenta equal:
50000kg * 24m/s = (50000kg + 55000kg) * v
Solving for the velocity v:
v = 50000kg * 24m/s/(50000kg + 55000kg) = 11,43m/s
Visible light waves are the type of electromagnetic waves that make up the colors of the rainbow, because the rainbow is visible to us.