1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
stiks02 [169]
3 years ago
10

Unpolarized light passes through two Polaroid sheets. The transmission axis of the second polarizing filter makes an angle of 48

0 with the axis of the first polarizer. What fraction of the original unpolarized light is transmitted through the second polarizing filter
Physics
1 answer:
Sergeu [11.5K]3 years ago
7 0

Answer:

Just 0.335 of the light is transmitted through the second polarizer

Explanation:

When the light passes through to the second polarizer, the intensity is equal:

I_{2}= \frac{I}{2} cos\theta

Where

θ = 48°

Replacing:

I_{2}= \frac{I}{2} cos\48=0.335I

You might be interested in
Starting from rest, a disk rotates about its central axis with constant angular acceleration. In 1.00 s, it rotates 21.0 rad. Du
ELEN [110]

With constant angular acceleration \alpha, the disk achieves an angular velocity \omega at time t according to

\omega=\alpha t

and angular displacement \theta according to

\theta=\dfrac12\alpha t^2

a. So after 1.00 s, having rotated 21.0 rad, it must have undergone an acceleration of

21.0\,\mathrm{rad}=\dfrac12\alpha(1.00\,\mathrm s)^2\implies\alpha=42.0\dfrac{\rm rad}{\mathrm s^2}

b. Under constant acceleration, the average angular velocity is equivalent to

\omega_{\rm avg}=\dfrac{\omega_f+\omega_i}2

where \omega_f and \omega_i are the final and initial angular velocities, respectively. Then

\omega_{\rm avg}=\dfrac{\left(42.0\frac{\rm rad}{\mathrm s^2}\right)(1.00\,\mathrm s)}2=42.0\dfrac{\rm rad}{\rm s}

c. After 1.00 s, the disk has instantaneous angular velocity

\omega=\left(42.0\dfrac{\rm rad}{\mathrm s^2}\right)(1.00\,\mathrm s)=42.0\dfrac{\rm rad}{\rm s}

d. During the next 1.00 s, the disk will start moving with the angular velocity \omega_0 equal to the one found in part (c). Ignoring the 21.0 rad it had rotated in the first 1.00 s interval, the disk will rotate by angle \theta according to

\theta=\omega_0t+\dfrac12\alpha t^2

which would be equal to

\theta=\left(42.0\dfrac{\rm rad}{\rm s}\right)(1.00\,\mathrm s)+\dfrac12\left(42.0\dfrac{\rm rad}{\mathrm s^2}\right)(1.00\,\mathrm s)^2=63.0\,\mathrm{rad}

5 0
4 years ago
Why are eight electrons (four pairs) surrounding each non-hydrogen atom the optimal electronic arrangement for covalent molecule
rodikova [14]

Eight electrons surrounding each non-hydrogen atom is the optimal electronic arrangement for covalent molecules because it is needed to achieve an octet structure and is necessary to fill both the s and p subshells of electrons.

<h3>What is Covalent bonding?</h3>

This is the type of bonding which involves the sharing of electrons between atoms of an element.

This is done to achieve an octet configuration thereby making them stable and less reactive thereby making it the most appropriate choice.

Read more about Covalent bonding here brainly.com/question/3447218

#SPJ4

3 0
2 years ago
What is v^2=0.05-4.9 please i need this asap​
Margaret [11]

Answer:

v =2.02

Explanation:

v^2=0.05-4.9

v^2=-4.85

square root both side

v=2.02

^^^^this is a not a perfect square  

7 0
3 years ago
Who water rocket starts from rest and roses straight up with an acceleration of 5 m/s until it runs out of water 2.5 seconds lat
Kitty [74]

Answer:

23. 4375 m

Explanation:

There are two parts of the rocket's motion

1 ) accelerating  (assume it goes upto  h1 height )

using motion equations upwards

s = ut+\frac{1}{2}*a*t^{2} \\h_1=0+\frac{1}{2}*5*2.5^{2} \\=15.625 m

Lets find the velocity after 2.5 seconds (V1)

V = U +at

V1 = 0 +5*2.5 = 12.5 m/s  

2) motion under gravity (assume it goes upto  h2 height )

now there no acceleration from the rocket. it is now subjected to the gravity

using motion equations upwards (assuming g= 10m/s² downwards)

V²= U² +2as

0 = 12.5²+2*(-10)*h2

h2 = 7.8125 m

maximum height = h1 + h2

                            = 15.625 + 7.8125

                            = 23. 4375 m

3 0
3 years ago
Consider a cyclotron in which a beam of particles of positive charge q and mass m is moving along a circular path restricted by
Ulleksa [173]

A) v=\sqrt{\frac{2qV}{m}}

B) r=\frac{mv}{qB}

C) T=\frac{2\pi m}{qB}

D) \omega=\frac{qB}{m}

E) r=\frac{\sqrt{2mK}}{qB}

Explanation:

A)

When the particle is accelerated by a potential difference V, the change (decrease) in electric potential energy of the particle is given by:

\Delta U = qV

where

q is the charge of the particle (positive)

On the other hand, the change (increase) in the kinetic energy of the particle is (assuming it starts from rest):

\Delta K=\frac{1}{2}mv^2

where

m is the mass of the particle

v is its final speed

According to the law of conservation of energy, the change (decrease) in electric potential energy is equal to the increase in kinetic energy, so:

qV=\frac{1}{2}mv^2

And solving for v, we find the speed v at which the particle enters the cyclotron:

v=\sqrt{\frac{2qV}{m}}

B)

When the particle enters the region of magnetic field in the cyclotron, the magnetic force acting on the particle (acting perpendicular to the motion of the particle) is

F=qvB

where B is the strength of the magnetic field.

This force acts as centripetal force, so we can write:

F=m\frac{v^2}{r}

where r is the radius of the orbit.

Since the two forces are equal, we can equate them:

qvB=m\frac{v^2}{r}

And solving for r, we find the radius of the orbit:

r=\frac{mv}{qB} (1)

C)

The period of revolution of a particle in circular motion is the time taken by the particle to complete one revolution.

It can be calculated as the ratio between the length of the circumference (2\pi r) and the velocity of the particle (v):

T=\frac{2\pi r}{v} (2)

From eq.(1), we can rewrite the velocity of the particle as

v=\frac{qBr}{m}

Substituting into(2), we can rewrite the period of revolution of the particle as:

T=\frac{2\pi r}{(\frac{qBr}{m})}=\frac{2\pi m}{qB}

And we see that this period is indepedent on the velocity.

D)

The angular frequency of a particle in circular motion is related to the period by the formula

\omega=\frac{2\pi}{T} (3)

where T is the period.

The period has been found in part C:

T=\frac{2\pi m}{qB}

Therefore, substituting into (3), we find an expression for the angular frequency of motion:

\omega=\frac{2\pi}{(\frac{2\pi m}{qB})}=\frac{qB}{m}

And we see that also the angular frequency does not depend on the velocity.

E)

For this part, we use again the relationship found in part B:

v=\frac{qBr}{m}

which can be rewritten as

r=\frac{mv}{qB} (4)

The kinetic energy of the particle is written as

K=\frac{1}{2}mv^2

So, from this we can find another expression for the velocity:

v=\sqrt{\frac{2K}{m}}

And substitutin into (4), we find:

r=\frac{\sqrt{2mK}}{qB}

So, this is the radius of the cyclotron that we must have in order to accelerate the particles at a kinetic energy of K.

Note that for a cyclotron, the acceleration of the particles is achevied in the gap between the dees, where an electric field is applied (in fact, the magnetic field does zero work on the particle, so it does not provide acceleration).

6 0
4 years ago
Other questions:
  • Assume a rectangular strip of a material with an electron density of n=5.8x1020 cm-3. The strip is 8 mm wide and 0.8 mm thick an
    5·1 answer
  • Suppose you are asked to find the amount of time t, in seconds, it takes for the turntable to reach its final rotational speed.
    12·1 answer
  • How do you do to your question to see if its answered?
    10·2 answers
  • Which of the following sets of characteristics describes the image formed by a plane mirror?A. Virtual and invertedB. Real and u
    7·1 answer
  • What kind of image is formed by a plane mirror
    9·1 answer
  • What is the wavelength of a sound wave with a frequency of 50 hz? (speed of sound is 342 m/s)?
    5·1 answer
  • If Star A is twice as far as Star B, and they are identical in all other ways, then the
    5·1 answer
  • 35 pts please help quick
    12·1 answer
  • Walt in 5 km in 25 minutes going Eastward what is his average velocity
    10·1 answer
  • Compute the velocity of an object orbiting at height 2Re above the surface of earth
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!