A quadratic equation is shown below:
1 answer:
the solutions to a general quadratic equation is
X=-b±√b²-4ac/2a ,, When ax²+bx+c=0
the discriminant is the expression under the radical b²−4ac
Part A:
discriminant is (-16)² - 4(9)(60) = -1904
there are two complex solutions
Part B:
4x² + 8x − 5 = 0
4x² + 10x -2x - 5=0
2x ( 2x + 5) - 1(2 x + 5) =0
(2x + 5)(2x-1) = 0
/ \
/ \
2x+5 = 0 2x-1 =0
x = -5/2 x = 1/2
You might be interested in
It may be a negative or a fracton of a number.
Answer:yes
Step-by-step explanation:divide each dimension
![x+y=25 \\ y=25-x~~Other~number~in~terms~of~x \\ \\ x^2+y^2=313 \\ x^2+2xy+y^2=313+2xy \\ (x+y)^2=313+2x(25-x) \\ \frac{25^2-313}{2} =25x-x^2 \\ x^2-25x+156 \\ \\ \Delta =(-25)^2-4\times 1\times 156 \\ \Delta =625-624 \\ \sqrt{\Delta}=1 \\ \\ x= \frac{25 \pm 1}{2} \\ x= \left \{ {{x_1=13} \atop {x_2=12}} \right.](https://tex.z-dn.net/?f=x%2By%3D25%20%5C%5C%20y%3D25-x~~Other~number~in~terms~of~x%20%5C%5C%20%5C%5C%20x%5E2%2By%5E2%3D313%20%5C%5C%20x%5E2%2B2xy%2By%5E2%3D313%2B2xy%20%5C%5C%20%28x%2By%29%5E2%3D313%2B2x%2825-x%29%20%5C%5C%20%5Cfrac%7B25%5E2-313%7D%7B2%7D%20%3D25x-x%5E2%20%5C%5C%20x%5E2-25x%2B156%20%5C%5C%20%5C%5C%20%5CDelta%20%3D%28-25%29%5E2-4%5Ctimes%201%5Ctimes%20156%20%5C%5C%20%5CDelta%20%3D625-624%20%5C%5C%20%5Csqrt%7B%5CDelta%7D%3D1%20%5C%5C%20%5C%5C%20x%3D%20%5Cfrac%7B25%20%5Cpm%201%7D%7B2%7D%20%5C%5C%20x%3D%20%5Cleft%20%5C%7B%20%7B%7Bx_1%3D13%7D%20%5Catop%20%7Bx_2%3D12%7D%7D%20%5Cright.)
The number "x" is given by:
Therefore, we have:
Answer:
A -3
Step-by-step explanation:
-6 times -3 = Postive 18. then 18+3=21
:). Hope that helped
Answer:
the angles always equal 180
Step-by-step explanation: