Wavelength = (speed) / (frequency)
Wavelength = (340 m/s) / (600 /s)
Wavelength = 0.567 meter
The answer is <span>b. 6.1 times as long
</span>
Step 1: Calculate the time <span>it takes objects to reach a speed on the Moon.
</span>Step 2: Calculate the time it takes objects to reach a speed on the Earth.
Step 3. Divide the time on the Moon by the time on the Earth.
Use the formula: v2 = v1 + at
v2 - the final velocity
v1 - the initial velocity
a - gravitational acceleration
t - time
Step 1.
Moon:
<span>v1 = 0 (because it is free fall)
v2 = 10 m/s
a = 1.6 m/s</span>²
t = ?
______
v2 = v1 + at
10 = 0 + 1.6t
10 = 1.6t
t = 10/1.6
t = 6.25 s
Step 2.
Earth:
v1 = 0 (because it is free fall)
v2 = 10 m/s
a = 9.81 m/s²
t = ?
______
v2 = v1 + at
10 = 0 + 9.81t
10 = 9.81t
t = 10/9.81
t = 1.02 s
Step 3:
6.25 s / 1.02 s = 6.1 s
A. fixed volume, changeable shape.
Kinetic energy = (1/2) to mass and speed^2.
The formula of speed, and it will be squared.
multiply (4)^2 and it equals to 16.