Answer:
La distancia de C con respecto a A es de 197.788 metros.
Step-by-step explanation:
A manera de imagen adjunta construimos una representación del enunciado del problema, la cual representa a un triángulo cuyos tres ángulos son conocidos y la longitud del segmento AB, medida en metros, son conocidos. Por medio de la Ley del Seno podemos calcular la longitud del segmento AC (distancia de C con respecto a A), medida en metros:
(1)
Si sabemos que
,
y
, entonces la longitud del segmento AC es:
![AC = AB\cdot \left(\frac{\sin B}{\sin C} \right)](https://tex.z-dn.net/?f=AC%20%3D%20AB%5Ccdot%20%5Cleft%28%5Cfrac%7B%5Csin%20B%7D%7B%5Csin%20C%7D%20%5Cright%29)
![AC = (200\,m)\cdot \left(\frac{\sin 57^{\circ}}{\sin 58^{\circ}} \right)](https://tex.z-dn.net/?f=AC%20%3D%20%28200%5C%2Cm%29%5Ccdot%20%5Cleft%28%5Cfrac%7B%5Csin%2057%5E%7B%5Ccirc%7D%7D%7B%5Csin%2058%5E%7B%5Ccirc%7D%7D%20%5Cright%29)
![AC = 197.788\,m](https://tex.z-dn.net/?f=AC%20%3D%20197.788%5C%2Cm)
La distancia de C con respecto a A es de 197.788 metros.
X= 48
this is found by simplifying both sides of the equation , then isolating the variable<span />
I think you have multiply 5x4 which equals 20 then 20 divided by 10 which equals 2 and that’s ur answer
Answer:
27.4
Step-by-step explanation:
First multiply the numerator and denominator by 10
Then write the problem in long division format
Then divide 52 by 19 and get 2
Then multiply the quotient digit (2) by the divisor 19
Then subtract 38 from 52
Then bring down the next number of the dividend
Then divide 140 by 19 to get 7
Then multiply the quotient digit (7) by the divisor 19
Then subtract 133 from 140
Then add a decimal point to the solution
Then bring down the next number of the dividend
Then divide 76 by 19 to get 4
Then multiply the quotient digit (4) by the divisor 19
Then subtract 76 from 76
The solution for long division for 52.06./1.9 is 27.4
27.4
Answer:
Option three
Step-by-step explanation: