Answer:
Range of Function : { - 9, - 5, - 1, 4 }
Step-by-step explanation:
We know that y = 2x - 5 provided the domain ( x - values ) { - 2, 0, 2, 4 }. Let us substitute each element in this set of domain as x in the equation "y = 2x - 5" as to solve for the y - values, otherwise known as the range of the function.
{ - 2, 0, 2, 4 }
y = 2( - 2 ) - 5 = - 9,
y = 2( 0 ) - 5 = - 5,
y = 2( 2 ) - 5 = - 1,
y = 2( 4 ) - 5 = 4
We have the set of y - values as { - 9, - 5, - 1, 4 }. This is the range of our function.
This problem is a combination of the Poisson distribution and binomial distribution.
First, we need to find the probability of a single student sending less than 6 messages in a day, i.e.
P(X<6)=P(X=0)+P(X=1)+P(X=2)+P(X=3)+P(X=4)+P(X=5)
=0.006738+0.033690+0.084224+0.140374+0.175467+0.175467
= 0.615961
For ALL 20 students to send less than 6 messages, the probability is
P=C(20,20)*0.615961^20*(1-0.615961)^0
=6.18101*10^(-5) or approximately
=0.00006181
Answer:
1000000
Step-by-step explanation:
Step-by-step explanation:
ED = EB
2x +3 = 5x -15
3+15=5x -2x
18 = 3x
18 ÷ 3 = x
x = 6
The anwser is D and I’m sure of it