Answer:
A solution is made by dissolving 4.87 g of potassium nitrate in water to a final volume of 86.4 mL solution. The weight/weight % or percent by mass of the solute is :
<u>2.67%</u>
Explanation:
Note : Look at the density of potassium nitrate in water if given in the question.
<u><em>You are calculating </em></u><u><em>weight /Volume</em></u><u><em> not weight/weight % or percent by mass of the solute</em></u>
Here the <u>weight/weight % or percent by mass</u> of the solute is asked : So first convert the<u> VOLUME OF SOLUTION into MASS</u>
Density of potassium nitrate in water KNO3 = 2.11 g/mL

Density = 2.11 g/mL
Volume of solution = 86.4 mL



Mass of Solute = 4.87 g
Mass of Solution = 183.2 g
w/w% of the solute =


w/w%=2.67%
Answer:
Check the explanation
Explanation:
Kindly check the attached image below to see the step by step explanation to the question above.
Answer:
When an atom loses electron(s) it will lose some of its negative charge and so becomes positively charged. A positive ion is formed where an atom has more protons than electrons. In the opposite case when an atom gains electron(s) it becomes negatively charged (more electrons than protons).
Explanation:
Answer:
9.36
Explanation:
Sodium formate is the conjugate base of formic acid.
Also,

for sodium formate is 
Given that:
of formic acid = 
And, 
So,


Concentration = 0.35 M
HCOONa ⇒ Na⁺ + HCOO⁻
Consider the ICE take for the formate ion as:
HCOO⁻ + H₂O ⇄ HCOOH + OH⁻
At t=0 0.35 - -
At t =equilibrium (0.35-x) x x
The expression for dissociation constant of sodium formate is:
![K_{b}=\frac {[OH^-][HCOOH]}{[HCOO^-]}](https://tex.z-dn.net/?f=K_%7Bb%7D%3D%5Cfrac%20%7B%5BOH%5E-%5D%5BHCOOH%5D%7D%7B%5BHCOO%5E-%5D%7D)

Solving for x, we get:
x = 0.44×10⁻⁵ M
pOH = -log[OH⁻] = -log(0.44×10⁻⁵) = 4.64
pH + pOH = 14
So,
<u>pH = 14 - 4.64 = 9.36</u>
Answer:
isotope 2
Explanation:
it has the highest percentage abundance