126,720 inches are in 2.0 miles
Answer:
No effect.
Explanation:
Hello,
In this case, considering the widely studied Le Chatelier's principle, we can realize that the factors affecting equilibrium are concentration, temperature and pressure and volume if the reaction is in gaseous phase and with non-zero change in the number of moles. In such a way, by adding a catalyst to given reaction will have no effect on the equilibrium direction.
Best regards.
Explanation:
In this reaction, the reactants are Li and N2. The product is Li3N
So we have;
Li + N2 → Li3N
Upon balancing, we have;
6Li + N2 → 2 Li3N
The sum of the coefficients is 6 + 1 + 2 = 9
We need to first find the molarity of Ba(OH₂) solution.
A mass of 3.24 mg is dissolved in 1 L solution.
Ba(OH)₂ moles dissolved - 3.24 x 10⁻³ g/171.3 g/mol = 1.90 x 10⁻⁵ mol
dissociaton of Ba(OH)₂ is as follows;
Ba(OH)₂ --> Ba²⁺ + 2OH⁻
1 mol of Ba(OH)₂ dissociates to form 2OH⁻ ions.
Therefore [OH⁻] = (1.90 x 10⁻⁵)x2 = 3.8 x 10⁻⁵ M
pOH = -log[OH⁻]
pOH = -log (3.8 x 10⁻⁵)
pOH = 4.42
pH + pOH = 14
therefore pH = 14 - 4.42
pH = 9.58
Answer:
The time taken for the cross mark to disappear decreases steadily down the column.
Explanation:
Now if we look at the data provided, we will discover that the volume of the HCl was held constant while the volume of the thiosulphate was increased steadily and the volume of water decreased steadily.
Recall that a system is more concentrated when it contains less volume of water and more volume of reactants. Hence as the volume of water in the system is being reduced, the concentration of reactants is increased.
It has been established that an increase in the concentration of reactants lead to an increase in the rate of reaction. The disappearance of the cross shows the completion of the reaction between HCl and thiosulphate. The faster or slower the cross disappears, the faster or slower the rate of reaction.
Since increase in concentration of reactants increases the rate of reaction, it is observed that as the volume of the thiosulphate increases (reactant concentration increases) the cross disappears faster (rate of reactant increases). Hence as the volume of thiosulphate increases, it takes a shorter time for the cross to disappear. This implies that the time column in the table (refer to the question) will decrease steadily as the volume of thiosulphate increases.