Answer:
Each pitcher has the same fraction of the other drink.
Step-by-step explanation:
After 1 cup of tea is added to x cups of lemonade, the mix has the ratio 1:x of tea to lemonade. So, the fraction of mix that is tea is 1/(x+1).
The 1 cup of mix contains 1/(x+1) cups of tea and so x/(x+1) cups of lemonade. When that amount of lemonade is added to the tea, it brings the proportion of lemonade in the tea to (x/(x+1))/x = 1/(x+1), the same proportion as that of tea in the lemonade.
_____
You can consider the degenerate case of one cup of drink in each pitcher. Then when the 1 cup of tea is removed from its pitcher and added to the lemonade, you have a 50-50 mix of tea and lemonade. Removing 1 cup of that mix and putting it back in the tea pitcher makes there be a 50-50 mix in both pitchers.
Increasing the quantity in each pitcher does nothing to change the fact that the mixes end up in the same ratio:
tea:lemonade in Pitcher 1 = lemonade:tea in Pitcher 2
Hello,
- 3&2/5=-17/5=-3.4
==>-3.4<n<-2.7
==>n=-3 (if -3 is an integer)
<span>8x² - x + x² + 4x - 9x² = 18
3x = 18 | 8x</span>² + x² - 9x² = 0<span>
x = 6 | divide by 3
Answer: x = 6</span>