Answer:
The general formula for the total surface area of a regular pyramid is T. S. A. =12pl+B where p represents the perimeter of the base, l the slant height and B the area of the base.
Answer:
<h2><u><em>30x² − 23x − 14</em></u></h2>
Explanation:
Length: (6x - 7)
Width: (5x + 2)
(6x - 7) (5x + 2)
= (6x + −7)(5x + 2)
(6x)(5x) + (6x)(2) + (−7)(5x) + (−7)(2)
= 30x² + 12x − 35x − 14
- PNW
Answer:
For the 99th percentile, we have X = 206 seconds.
Step-by-step explanation:
Problems of normally distributed samples can be solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:

99th percentile:
Value of X when Z has a pvalue of 0.99. So we use 




For the 99th percentile, we have X = 206 seconds.
This is quite a complex problem. I wrote out a really nice solution but I can't work out how to put it on the website as the app is very poorly made. Still, I'll just have to type it all in...
Okay so you need to use a technique called logarithmic differentiation. It seems quite unnatural to start with but the result is very impressive.
Let y = (x+8)^(3x)
Take the natural log of both sides:
ln(y) = ln((x+8)^(3x))
By laws of logarithms, this can be rearranged:
ln(y) = 3xln(x+8)
Next, differentiate both sides. By implicit differentiation:
d/dx(ln(y)) = 1/y dy/dx
The right hand side is harder to differentiate. Using the substitution u = 3x and v = ln(x+8):
d/dx(3xln(x+8)) = d/dx(uv)
du/dx = 3
Finding dv/dx is harder, and involves the chain rule. Let a = x+ 8:
v = ln(a)
da/dx = 1
dv/da = 1/a
By chain rule:
dv/dx = dv/da * da/dx = 1/a = 1/(x+8)
Finally, use the product rule:
d/dx(uv) = u * dv/dx + v * du/dx = 3x/(x+8) + 3ln(x+8)
This overall produces the equation:
1/y * dy/dx = 3x/(x+8) + 3ln(x+8)
We want to solve for dy/dx, achievable by multiplying both sides by y:
dy/dx = y(3x/(x+8) + 3ln(x+8))
Since we know y = (x+8)^(3x):
dy/dx = ((x+8)^(3x))(3x/(x+8) + 3ln(x+8))
Neatening this up a bit, we factorise out 3/(x+8):
dy/dx = (3(x+8)^(3x-1))(x + (x+8)ln(x+8))
Well wasn't that a marathon? It's a nightmare typing that in, I hope you can follow all the steps.
I hope this helped you :)