Answer:
The answer to your question is below
Explanation:
Data 1
mass 1 = 250
mass 2 = 250 kg
gravity constant = 6.67 x 10⁻¹¹ Nm²/kg²
distance = 8 m
Formula

Substitution

Result
F = 0.000000065 N
Data 2
mass 1 = 1000 kg
mass 2 = 1000 kg
distance = 5 m
Substitution

Result
F = 0.000002667 N
Answer:50%
Explanation: put it you are in a hurry
<span>After an exoplanet has been identified using a given detection method, scientists attempt to identify the basic properties of the planet which can tell us what it might be made of, how hot it might be, whether or not it contains an atmosphere, how that atmosphere might behave, and finally, whether the planet may be suitable for life. It is often useful to first determine basic properties of the parent star (such as mass and distance from the Earth). This is then followed by the use of planetary detection methods to calculate planetary mass, radius, orbital radius, orbital period, and density. The density calculation will provide clues as to what the planet is made of and whether or not it contains a significant atmosphere.
Mass and Distance of Parent Star
The mass and distance of an exoplanet's parent star must often be calculated first, before certain measurements of the exoplanet can be made. For example, determining the star's distance is an important step in determining a star's mass (see below). Knowing the mass of a star then allows the mass of the planet to be measured, for example when using the Radial Velocity Method.</span>
Answer:
it will give one electron to the bromine atom, so the bromine atom will have 36 electrons. this is an ionic bonding
Explanation:
Answer:
If you use the same force to push a truck and a car, the car will have more acceleration than the truck because the car has less mass.
It is easier to push an empty shopping cart than a full one, because the full shopping cart has more mass than the empty one. This means that more force is required to push the shopping cart.
When a person kicks a ball the person exerts force in a specific direction, that is the direction in which it will travel. In addition to this, the stronger the ball is kicked, the stronger the force we put on it and the further away it will travel.
Suppose two people are walking and among the two people, if one is heavier than the other, then the one weighing heavier will walk slower because the acceleration of the person weighing lighter is greater.
When riding a bicycle, the bicycle acts as mass and our leg muscles pushing on the pedals of the bicycle is the force.
Explanation: