1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elena-2011 [213]
3 years ago
6

Major storms get their energy from WATER VAPOR in the air. Which step of the water cycle would give energy to a storm

Physics
1 answer:
IrinaK [193]3 years ago
7 0
Evaporation is the process of water being evaporated and rising. This water vapor condenses at a certain point and mixes with aerosols to create a cloud.
You might be interested in
Suppose that instead of being inclined to Earth's orbit around the Sun, the Moonâs orbit was in the same plane as Earthâs orbit
ycow [4]

Answer:

c) 12

Explanation:

A Solar eclipse occurs when The Sun, The Earth and The Moon comes in a straight line with the Moon being in between the Earth and the Sun. At this point the Moon appears to block the Sun and Moon's shadow falls on Earth. This would occur only on the day of the New Moon.

If the Moon's orbit was in the same plane as that of the Earth's orbit. Every new Moon, there would be a Solar Eclipse. The Lunar cycle is of 29.5 Days which means there will be one new Moon every month. So there will be 12 Solar Eclipses every year.

Currently, the orbit of the Moon is tilted at an angle of 5° thus we don't see that many Solar eclipses. Maximum of 5 solar eclipses can occur in an year.

6 0
3 years ago
If blue light hits a red filter, what kind of light comes through the filter?
kotegsom [21]
It can be either C or B

Reasons it can be C: Red and Blue together(if I'm correct in art) is the combined color of two of the 3 primary colors to get a purple/violet color and if said filter is see through or just too dense for the light to even penetrate the said filter(in theory) but all in all purple is the answer with the two primary colors blue and red.

But also, it depends on what kind of filter it is, if the filter is like a screen filter then it will just come out in blue with the slightly different colors of again purple but in a darker tone then the actual eye can see.

Or it can be just C again cause the filter can be a film but that's a bit too far and to complex for right now so I believe it is B
8 0
3 years ago
A circuit consists of a battery connected to three resistors (65 ω, 25ω, and 170ω) in parallel. the total current through the re
White raven [17]
A. To find the total emf of the battery, just remember that in a parallel circuit, the voltage is the same throughout the circuit. So you can get the total voltage of the circuit by using Ohm's Law. 

I= \frac{V}{R}

Where:
I = current (A)
V = Voltage (V) (emf)
R = Resitance (Ω)

Now you can derive the formula of Voltage by transposing the Resistance to the other side of the equation to isolate Voltage. The formula you will now use will be:
V = IR

However, you cannot solve this yet because the resistance you need is the total resistance in the circuit. To do this, you need to get the total resistance in this parallel circuit and the formula would be:

\frac{1}{R_{T}} =  \frac{1}{R_{1}}+ \frac{1}{R_{2}}+ \frac{1}{R_{3}}...+ \frac{1}{R_{n}}

You have three resistors with the following resistance:
65Ω, 25Ω and 170Ω
\frac{1}{R_{T}} = \frac{1}{R_{1}}+ \frac{1}{R_{2}}+ \frac{1}{R_{3}}...+ \frac{1}{R_{n}}

\frac{1}{R_{T}} = \frac{1}{R_{65}}+ \frac{1}{R_{25}}+ \frac{1}{R_{170}}


\frac{1}{R_{T}} =0.0153+0.04+0.006+0.0059
\frac{1}{R_{T}} =0.0613

Get the reciprocal of both sides and divide:

R_{T} =  \frac{1}{0.0613} =16.32

The total resistance then is 16.32Ω

Now that you have the total resistance, you can solve for the total voltage:
V = IR
V = (1.8)(16.32)
V = 29.376V

The emf of the battery is 29.376V


B. To find the resistance in each resistor, just apply Ohm's law again. In a parallel circuit, the voltage is the same, but the current that runs through it is different for each resistor. Now just solve for the current of each using the same voltage.

Resistor 1: 65Ω
I= \frac{V}{R}
I= \frac{29.376}{65}
I= 0.45A

The current flowing through resistor 1 with a resistance of 65Ω is 0.45A.

Resistor 2: 25Ω
I= \frac{V}{R}
I= \frac{29.376}{25}
I= 1.18A
The current flowing through resistor 2 with a resistance of 25Ω is 1.18A.

Resistor 3: 170Ω
I= \frac{V}{R}
I= \frac{29.376}{170}
I= 0.17A

The current flowing through resistor 3 with a resistance of 170Ω is 0.17A.

If you add up all their current it confirms the given that the total current running through all of them is 1.8A.
4 0
3 years ago
a train has an initial velocity of 30 m/s. If the train accelerates uniformly at a rate of 6.3 m/s ^ for 2.8 seconds what is the
Annette [7]

T

Answer:

the velocity is a second final to initial velocity of 39

3 0
2 years ago
Consider your moment of inertia about a vertical axis through the center of your body, both when you are standing straight up wi
jeka94

Answer:

     I₁ / I₂ = 1.43

Explanation:

To find the relationship of the two inertial memits, let's calculate each one, let's start at the moment of inertia with the arms extended

Before starting let's reduce all units to the SI system

       d₁ = 42 in (2.54 10⁻² m / 1 in) = 106.68 10⁻² m

       d₂ = 38 in = 96.52 10⁻² m

The moment of inertia is a scalar quantity for which it can be added, the moment of total inertia would be the moment of inertia of the man (cylinder) plus the moment of inertia of each arm

        I₁ = I_man + 2 I_ arm

Man indicates that we can approximate them to a cylinder where the average diameter is

         d = (d₁ + d₂) / 2

         d = (106.68 + 96.52) 10-2 = 101.6 10⁻² m

The average radius is

         r = d / 2 = 50.8 10⁻² m = 0.508 m

The mass of the trunk is the mass of man minus the masses of each arm.

        M = M_man - 0.2 M_man = 80 (1-0.2)

        M = 64 kg

The moments of inertia are:

A cylinder with respect to a vertical axis:         Ic = ½ M r²

A rod that rotates at the end:                            I_arm = 1/3 m L²

Let us note that the arm rotates with respect to man, but this is at a distance from the axis of rotation of the body, so we must use the parallel axes theorem for the moment of inertia of the arm with respect to e = of the body axis.

           I1 = I_arm + m D²

Where D is the distance from the axis of rotation of the arm to the axis of the body

          D = d / 2 = 101.6 10⁻² /2 = 0.508 m

Let's replace

          I₁ = ½ M r² + 2 [(1/3 m L²) + m D²]

Let's calculate

         I₁ = ½ 64 (0.508)² + 2 [1/3 8 1² + 8 0.508²]

         I₁ = 8.258 + 5.33 + 4.129

         I₁ = 17,717 Kg m² / s²

Now let's calculate the moment of inertia with our arms at our sides, in this case the distance L = 0,

          I₂ = ½ M r² + 2 m D²

          I₂ = ½ 64 0.508² + 2 8 0.508²

          I₂ = 8,258 + 4,129

          I₂ = 12,387 kg m² / s²

The relationship between these two magnitudes is

          I₁ / I₂ = 17,717 /12,387

          I₁ / I₂ = 1.43

3 0
3 years ago
Other questions:
  • What are the two measurements necessary for calculating average speed?
    9·2 answers
  • Which of the following is not an intensive physical property?
    12·2 answers
  • Which is a FALSE statement about elements? Select one: a. Each element has its own neutron number. b. Each element has its own a
    9·1 answer
  • I attach a 4.1 kg block to a spring that obeys Hooke's law and supply 3.8 J of energy to stretch the spring. I release the block
    13·1 answer
  • When connected to a battery, a lightbulb glows brightly. If the battery is reversed and reconnected to the bulb, the bulb will g
    15·1 answer
  • Help me with this please​
    6·1 answer
  • You should always wear your seatbelt just in case the car comes to an abrupt stop. The seatbelt will hold you in place so that y
    8·2 answers
  • Can anyone help me out with conservation of energy
    9·1 answer
  • 2. Are high trade deficits a worry?
    7·1 answer
  • You decide to roll a 0.11-kgkg ball across the floor so slowly that it will have a small momentum and a large de Broglie wavelen
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!