Answer:
V = 5.17L
Explanation:
Mass of gas = 8.7g
T = 23°C = (23 + 273.15)K = 296.15K
P = 1.15 atm
V = ?
R = 0.082atm.L / mol.K
From ideal gas equation
PV = nRT
P = pressure of the gas
V = volume of the gas
n = no. Of moles
R = ideal gas constant
T = temperature of the gas
no of moles = mass / molar mass
Molar mass of Chlorine = 35.5g / mol
No. Of moles = 8.7 / 35.5
No. Of moles = 0.245 moles
PV = nRT
V = nRT / P
V = (0.245 * 0.082 * 296.15) / 1.15
V = 5.9496 / 1.15
V = 5.17L
The volume of the gas is 5.17L
Answer:

Explanation:
Temperature and thermal energy are in a direct proportion which means that if temperature of a substance increases, its thermal energy also increases and vice versa.
![\rule[225]{225}{2}](https://tex.z-dn.net/?f=%5Crule%5B225%5D%7B225%7D%7B2%7D)
Hope this helped!
<h3>~AH1807</h3>
Ca(OH)2(aq) + 2HCl(aq)------> CaCl2(aq) + 2H2O(l) ΔH-?
CaO(s) + 2HCl(aq)-----> CaCl2(aq) + H2O(l), Δ<span>H = -186 kJ
</span>
CaO(s) + H2O(l) -----> Ca(OH)2(s), Δ<span>H = -65.1 kJ
</span>
1) Ca(OH)2 should be reactant, so
CaO(s) + H2O(l) -----> Ca(OH)2(s)
we are going to take as
Ca(OH)2(s)---->CaO(s) + H2O(l), and ΔH = 65.1 kJ
2) Add 2 following equations
Ca(OH)2(s)---->CaO(s) + H2O(l), and ΔH = 65.1 kJ
<span><u>CaO(s) + 2HCl(aq)-----> CaCl2(aq) + H2O(l), and ΔH = -186 kJ</u>
</span>Ca(OH)2(s)+CaO(s) + 2HCl(aq)--->CaO(s) + H2O(l)+CaCl2(aq) + H2O(l)
Ca(OH)2(s)+ 2HCl(aq)---> H2O(l)+CaCl2(aq) + H2O(l)
By addig these 2 equation, we got the equation that we are needed,
so to find enthalpy of the reaction, we need to add enthalpies of reactions we added.
ΔH=65.1 - 186 ≈ -121 kJ
Answer:
B - To increase the rate of the reaction
Explanation:
Catalysts speed up the reaction without being reactants or products, so aren't used up in the reaction.
The particles in a solid are tightly packed and locked in place. Although we cannot see it or feel it, the particles are vibrating in place.
As these molecules heat up, they will vibrate more vigorously, and will eventually turn to water, then gas.