Answer:
The answer is 12.35
Explanation:
From the question we are given that the concentration of
is
Generally The rate equation is given as
![K_{w} = [H^{+} ][OH^{-} ]](https://tex.z-dn.net/?f=K_%7Bw%7D%20%3D%20%5BH%5E%7B%2B%7D%20%5D%5BOH%5E%7B-%7D%20%5D)
and
the rate constant has a value 
Substituting and making [
] the subject we have
![[OH^{-} ] = \frac{1 * 10^{-14}}{[H^{+}]} = \frac{1 * 10^{-14}}{8.1 *10^{-6}} =1.235 * 10^{-9}](https://tex.z-dn.net/?f=%5BOH%5E%7B-%7D%20%5D%20%3D%20%5Cfrac%7B1%20%2A%2010%5E%7B-14%7D%7D%7B%5BH%5E%7B%2B%7D%5D%7D%20%3D%20%5Cfrac%7B1%20%2A%2010%5E%7B-14%7D%7D%7B8.1%20%2A10%5E%7B-6%7D%7D%20%3D1.235%20%2A%2010%5E%7B-9%7D)
![[OH ^ {-}] = 1.235 * 10^{-9}M](https://tex.z-dn.net/?f=%5BOH%20%5E%20%7B-%7D%5D%20%3D%201.235%20%2A%2010%5E%7B-9%7DM)
Multiply the value by
as instructed from the question we have
Answer =
Hence the answer in 2 decimal places is 12.35
<span>In the distant future, earth was no longer habitable by humans due to extreme pollution and excessive waste. Humans were not allowed to go back to earth due to the severity of the planet's condition and they dwell in space for hundreds of years while WALL-E, short for Waste Allocation Load Lifter Earth-class, was the only robot left to clean the planet, little by little.</span>
Answer:
It's an Acid
Explanation:
cuz of the Co2 and it's naturally acidic nature
Silicon is a popular semi-conductor. The process of doping either creates an excess or lack of electrons. In the case of silicon, the dopant is arsenic which has greater valence electron than silicon. Arsenic then donates an electron resulting to an excess of electrons. A new type or better type of semi-conductor is created. Silicon conduct greater electricity.
The best answer is the last option.
The molecular formula shows the number of atoms present. The molecular formula of the gas is most likely ClO2.
In terms of gas density and molar mass, the ideal gas equation can be written in the form; PM = dRT
Where;
P = pressure of the gas
M = molar mass of the gas
d = density of the gas
R = molar gas constant
T = temperature of the gas
Making the molar mass of the gas the subject of the formula;
M = dRT/P
d = 2.875 g/L
R = 0.082 atmLmol-1K-1
T = 11°C + 273 = 284 K
P = 750.0 mm Hg or 0.99 atm
Substituting values;
M = 2.875 g/L × 0.082 atmLmol-1K-1 × 284 K/ 0.99 atm
M = 67.6 g/mol
The gas is most likely ClO2.
Learn more: brainly.com/question/11969651