Answer:
heya!!!
Explanation:
In atomic physics, the Rutherford–Bohr model or Bohr model, presented by Niels Bohr and Ernest Rutherford in 1913, is a system consisting of a small, dense nucleus surrounded by orbiting electrons—similar to the structure of the Solar System, but with attraction provided by electrostatic forces in place of gravity.
<u>Given information:</u>
Mass of NaCl (m) = 87.75 g
Volume of solution (V) = 500 ml = 0.5 L
Molar mass of NaCl (M) = 58.44 g/mol
<u>To determine:</u>
The molarity of NaCl solution
<u>Explanation:</u>
Molarity is defined as the number of moles of solute(n) dissolved per liter of solution (V)
i.e. M = moles of solute/liters of solution = n/V
Moles of solute (n) = mass of solute (m)/molar mass (M)
moles of NaCl = 87.75 g/58.55 g.mol-1 = 1.499 moles
Therefore,
Molarity of NaCl = 1.499 moles/0.5 L = 2.998 moles/lit ≅ 3 M
<u>Ans: (D)</u>
<span> The atomic number increases by one and the element becomes a different element. </span>
Answer:
Number of Na ions in 14.5 g of NaCl is 1.49 × 10²³.
Number of Cl ions in 14.5 g of NaCl is 1.49 × 10²³.
Total number of ions = 1.49 × 10²³ + 1.49 × 10²³ = 2.98 × 10²³.
Explanation:
1 mole of any compound contains 6.023 × 10²³ molecules.
molecular weight of NaCl is 23 + 35.5 = 58.5 g.
so, 58.5 grams of NaCl makes 1 mole
⇒ 14.5 g of NaCl =
= 0.248 moles.
⇒ 0.248 mole contains 0.248 × 6.023×10²³ molecules
= 1.49 × 10²³ molecules.
And 1 molecule contains 1 Na ion and 1 Cl ion.
⇒ number of Na ions in 14.5 g of NaCl is 1.49 × 10²³.
⇒ number of Cl ions in 14.5 g of NaCl is 1.49 × 10²³.
Total number of ions = 1.49 × 10²³ + 1.49 × 10²³ = 2.98 × 10²³.