24x11 = 264
264 / 8 = 33
a = 33
Answer:
Numerator = 2(b^2+a^2) or equivalently 2b^2+2a^2
Denominator = (b+a)^2*(b-a), or equivalently b^3+ab^2-a^2b0-a^3
Step-by-step explanation:
Let
S = 2b/(b+a)^2 + 2a/(b^2-a^2) factor denominator
= 2b/(b+a)^2 + 2a/((b+a)(b-a)) factor denominators
= 1/(b+a) ( 2b/(b+a) + 2a/(b-a)) find common denominator
= 1/(b+a) ((2b*(b-a) + 2a*(b+a))/((b+a)(b-a)) expand
= 1/(b+a)(2b^2-2ab+2ab+2a^2)/((b+a)(b-a)) simplify & factor
= 2/(b+a)(b^2+a^2)/((b+a)(b-a)) simplify & rearrange
= 2(b^2+a^2)/((b+a)^2(b-a))
Numerator = 2(b^2+a^2) or equivalently 2b^2+2a^2
Denominator = (b+a)^2*(b-a), or equivalently b^3+ab^2-a^2b0-a^3
Answer:
21+35
Step-by-step explanation:
use distributive property, multiply 7 by the two numbers in the parenthesis
keep the problem though.
Answer:
4 and 9
Step-by-step explanation:
let their ages be x and x - 5, then in 4 years their ages will be
x + 4 and x - 5 + 4 = x - 1 , and the product is 104, thus
(x + 4)(x - 1) = 104 ← expand factors on left using FOIL
x² + 3x - 4 = 104 ( subtract 104 from both sides )
x² + 3x - 108 = 0 ← in standard form
(x + 12)(x - 9) = 0 ← in factored form
Equate each factor to zero and solve for x
x + 12 = 0 ⇒ x = - 12
x - 9 = 0 ⇒ x = 9
However, x > 0 ⇒ x = 9
Thus
Their present ages are 9 and 9 - 5 = 4