1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
34kurt
3 years ago
6

a shipment of ball bearings with a mean diameter of 25 mm and a standard deviation of 0.2 mm is normally distributed. by how man

y standard deviations does a ball bearing with a diameter of 25.6 mm differ from the mean? 0.6 1 2 3
Mathematics
1 answer:
yarga [219]3 years ago
3 0
Mean diameter = 25 mm
Standard deviation = 0.2 mm
25.6 mm - 25 mm = 0.6 mm
0.6 mm : 0.2 mm = 3
Answer:
A ball bearing with a diameter 25.6 mm differs from the mean
D ) 3 standard deviations.
You might be interested in
Factor the polynomial: 3x(x-6)+8(x-6)
AysviL [449]

Its the first answer

5 0
3 years ago
Read 2 more answers
Does anyone know this answer?
ddd [48]

the question says that the samples included 100 people each, so it's just 100 multiplied by the amount of samples:

7×100=700

6 0
2 years ago
Read 2 more answers
Urgent!! Will mark brainliest!!
horsena [70]

Answer:

1) x is negative and y is positive ⇒ last answer

2) cotФ = -12/35 ⇒ second answer

3) The right identity is cot²Ф - csc²Ф = -1 ⇒ last answer

Step-by-step explanation:

* For any point (x , y) lies on the terminal side of the angle Ф

 in standard position

* x = cosФ and y = sinФ

- If Ф in the first quadrant, then x , y are positive

∴ All trigonometry functions are positive

- If Ф in the second quadrant, then x is negative , y is positive

∴ sinФ only is positive

- If Ф in the third quadrant, then x is negative , y is negative

∴ tanФ only is positive

- If Ф in the fourth quadrant, then x is positive , y is negative

∴ cosФ only is positive

* Lets solve the problems

∵ Ф = 3π/4 ⇒ (135°)

∴ It lies on the second quadrant

∴ x is negative and y is positive

* Lets revise the reciprocal of sinФ, cosФ and tanФ

- cscФ = 1/sinФ

- secФ = 1/cosФ

- cotФ = 1/tanФ

∵ secФ = -37/12

∴ cosФ = -12/37

∵ π/2 < Ф < π

∴ Ф lies on the second quadrant

∴ cotФ is negative values

∵ tan²Ф = sec²Ф - 1

∵ secФ = -37/12

∴ tan²Ф = (-37/12)² - 1 = 1225/144 ⇒ take√ for both sides

∴ tanФ = ± 35/12

∵ cotФ = ± 12/35

∵ cotФ is negative value

∴ cotФ = -12/35

* In the standard position of the angle Ф the terminal

 of it lies on the unit circle O

- By using Pythagorean theorem

∵ x² + y² = 1

∵ x = cosФ and y = sinФ

∴ cos²Ф + sin²Ф = 1 ⇒ (1)

∴ cos²Ф = 1 - sin²Ф

∴ sin²Ф = 1 - cos²Ф

* Divide (1) by cos²Ф

∴ cos²Ф/cos²Ф + sin²Ф/cos²Ф = 1/cos²Ф

* Remember sin²Ф/cos²Ф = tan²Ф and 1/cos²Ф = sec²Ф

∴ 1 + tan²Ф = sec²Ф ⇒ (2) ⇒ subtract 1 from both sides

∴ tan²Ф = sec²Ф - 1 ⇒ subtract sec²Ф from both sides

∴ tan²Ф - sec²Ф = -1

* Divide (1) by sin²Ф

∴ cos²Ф/sin²Ф + sin²Ф/si²Ф = 1/sin²Ф

* Remember cos²Ф/sin²Ф = cot²Ф and 1/sin²Ф = csc²Ф

∴ cot²Ф + 1 = csc²Ф ⇒ (3) ⇒ subtract 1 from both sides

∴ cot²Ф = csc²Ф - 1 ⇒ subtract csc²Ф from both sides

∴ cot²Ф - csc²Ф = -1

* The right identity is cot²Ф - csc²Ф = -1

3 0
3 years ago
What is the x-coordinate of the vertex of the parabola whose equation is y = 3x^2 + 12x + 5?
ahrayia [7]
Well it will be a simple as grid algebra 
3(2+12)+12x5
4 0
3 years ago
Read 2 more answers
Simplify u^2+3u/u^2-9<br> A.u/u-3, =/ -3, and u=/3<br> B. u/u-3, u=/-3
VashaNatasha [74]
  The correct answer is:  Answer choice:  [A]:
__________________________________________________________
→  "\frac{u}{u-3} " ;  " { u \neq ± 3 } " ; 

          →  or, write as:  " u / (u − 3) " ;  {" u ≠ 3 "}  AND:  {" u ≠ -3 "} ; 
__________________________________________________________
Explanation:
__________________________________________________________
 We are asked to simplify:
  
  \frac{(u^2+3u)}{(u^2-9)} ;  


Note that the "numerator" —which is:  "(u² + 3u)" — can be factored into:
                                                      →  " u(u + 3) " ;

And that the "denominator" —which is:  "(u² − 9)" — can be factored into:
                                                      →   "(u − 3) (u + 3)" ;
___________________________________________________________
Let us rewrite as:
___________________________________________________________

→    \frac{u(u+3)}{(u-3)(u+3)}  ;

___________________________________________________________

→  We can simplify by "canceling out" BOTH the "(u + 3)" values; in BOTH the "numerator" AND the "denominator" ;  since:

" \frac{(u+3)}{(u+3)} = 1 "  ;

→  And we have:
_________________________________________________________

→  " \frac{u}{u-3} " ;   that is:  " u / (u − 3) " ;  { u\neq 3 } .
                                                                                and:  { u\neq-3 } .

→ which is:  "Answer choice:  [A] " .
_________________________________________________________

NOTE:  The "denominator" cannot equal "0" ; since one cannot "divide by "0" ; 

and if the denominator is "(u − 3)" ;  the denominator equals "0" when "u = -3" ;  as such:

"u\neq3" ; 

→ Note:  To solve:  "u + 3 = 0" ; 

 Subtract "3" from each side of the equation; 

                       →  " u + 3 − 3 = 0 − 3 " ; 

                       → u =  -3 (when the "denominator" equals "0") ; 
 
                       → As such:  " u \neq -3 " ; 

Furthermore, consider the initial (unsimplified) given expression:

→  \frac{(u^2+3u)}{(u^2-9)} ;  

Note:  The denominator is:  "(u²  − 9)" . 

The "denominator" cannot be "0" ; because one cannot "divide" by "0" ; 

As such, solve for values of "u" when the "denominator" equals "0" ; that is:
_______________________________________________________ 

→  " u² − 9 = 0 " ; 

 →  Add "9" to each side of the equation ; 

 →  u² − 9 + 9 = 0 + 9 ; 

 →  u² = 9 ; 

Take the square root of each side of the equation; 
 to isolate "u" on one side of the equation; & to solve for ALL VALUES of "u" ; 

→ √(u²) = √9 ; 

→ | u | = 3 ; 

→  " u = 3" ; AND;  "u = -3 " ; 

We already have:  "u = -3" (a value at which the "denominator equals "0") ; 

We now have "u = 3" ; as a value at which the "denominator equals "0"); 

→ As such: " u\neq 3" ; "u \neq -3 " ;  

or, write as:  " { u \neq ± 3 } " .

_________________________________________________________
6 0
3 years ago
Other questions:
  • A sports ball has a diameter of 12 cm. Find the volume of the ball. Round your answer to 2 decimal places, and use 3.14 as an ap
    12·1 answer
  • X2 - xy (if x = 8 and y = -3)
    6·2 answers
  • A bucket of ice cream measures 8 inches tall and has a diameter of 12 inches. What is the volume of the bucket of ice cream? (Us
    15·2 answers
  • How do I get the square root on a calculator
    11·2 answers
  • Pls helpp me with this :(
    5·1 answer
  • Plz, help me if u cant answer both could you just answer one of them for me.
    12·2 answers
  • - 113 x (-4) =<br>plz no links​
    13·1 answer
  • How do we develop the powers of our mind​? Atleast 8 to 7 sentences
    13·1 answer
  • Part 3 of the notes some more coming
    12·2 answers
  • Pls solve question 8c, i will mark branliest
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!