Answer:
The answer to the question is
The pressure of carbon dioxide after equilibrium is reached the second time is 0.27 atm rounded to 2 significant digits
Explanation:
To solve the question, we note that the mole ratio of the constituent is proportional to their partial pressure
At the first trial the mixture contains
3.6 atm CO
1.2 atm H₂O (g)
Total pressure = 3.6+1.2= 4.8 atm
which gives
3.36 atm CO
0.96 atm H₂O (g)
0.24 atm H₂ (g)
That is
CO+H₂O→CO(g)+H₂ (g)
therefore the mixture contained
0.24 atm CO₂ and the total pressure =
3.36+0.96+0.24+0.24 = 4.8 atm
when an extra 1.8 atm of CO is added we get Increase in the mole fraction of CO we have one mole of CO produces one mole of H₂
At equilibrium we have 0.24*0.24/(3.36*0.96) = 0.017857
adding 1.8 atm CO gives 4.46 atm hence we have
(0.24+x)(0.24+x)/(4.46-x)(0.96-x) = 0.017857
which gives x = 0.031 atm or x = -0.6183 atm
Dealing with only the positive values we have the pressure of carbon dioxide = 0.24+0.03 = 0.27 atm
Answer:
It is basically a way of telling you how to solve for different variables in the equation d=m/v
Explanation:
1) Dalton stated that atom is matter that can not be divided, but it is proved that the atom can be divided into subatomic particles (electrons, protons and neutrons).
2) He stated that atoms of one element can not be changed into atoms of other elements, but now that is possible by nuclear reactions.
Today we still use his postulate: Atoms combine in the ratio of small whole numbers to form stable compounds, for example H₂O.
Answer: A
Explanation:
Hydrolysis reactions break down not only feldspars but many other silicate minerals as well, amphiboles, pyroxenes, micas, and olivines.