Answer:
On the Moh's scale of hardness, aluminum oxide is positioned just below to diamond due to which it is considered as one of the hardest known compounds. This also shows that the compound exhibit an enormous amount of lattice energy, as to transform the oxide into its constituent ions, the energy is required to overcome.
Based on the chemical formula of the compound, that is, Al2O3, it is shown that the ions of Al3+ and O2- are kept close due to the activity of the strong electrostatic ionic bonds. The electrostatic forces and the ionic bonding between the ions are extremely robust due to the presence of the ions high charge density. Therefore, to dissociate the bonds, an enormous amount of energy is needed, and at the same time, a high amount of lattice energy is present.
Answer:
3 > 2> 1
Explanation:
Aromatic compounds undergo electrophilic substitution reaction with several electrophiles.
Some substituted benzenes are more reactive towards electrophilic aromatic substitution than unsubstituted benzene.
Certain groups of substituents increase the ease with which an aromatic compound undergoes aromatic substitution.
If we look at the compounds closely, we will notice that only toluene leads to easy reaction with CH3Cl / AlCl3. Thus is due to the +I inductive effect of -CH3 which stabilizes the negatively charged intermediate produced in the reaction.
<u>Answer:</u> The pH of the solution is 9.71
<u>Explanation:</u>
1 mole of NaOH produces 1 mole of sodium ions and 1 mole of hydroxide ions.
We are given:
pOH of the solution = 7.2
To calculate the pH of the solution, we need to determine pOH of the solution. To calculate pOh of the solution, we use the equation:
![pOH=-\log[OH^-]](https://tex.z-dn.net/?f=pOH%3D-%5Clog%5BOH%5E-%5D)
We are given:
![[OH^-]=5.09\times 10^{-5}M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D5.09%5Ctimes%2010%5E%7B-5%7DM)
Putting values in above equation, we get:

To calculate pH of the solution, we use the equation:

Hence, the pH of the solution is 9.71
Answer:
Plasma.
Explanation:
In science, matter can be defined as anything that has mass and occupies space. Any physical object that is found on earth is typically composed of matter. Matter are known to be made up of atoms and as a result has the property of existing in states. The three (3) classical states of matter are;
I. Solid.
II. Liquid.
III. Gas
Plasma can be defined as a state of matter in which the electrons temporarily separate from the protons and as a result, it is generally referred to as the fourth (4th) state of matter due to its superheated nature.