Answer:
0.191 s
Explanation:
The distance from the center of the cube to the upper corner is r = d/√2.
When the cube is rotated an angle θ, the spring is stretched a distance of r sin θ. The new vertical distance from the center to the corner is r cos θ.
Sum of the torques:
∑τ = Iα
Fr cos θ = Iα
(k r sin θ) r cos θ = Iα
kr² sin θ cos θ = Iα
k (d²/2) sin θ cos θ = Iα
For a cube rotating about its center, I = ⅙ md².
k (d²/2) sin θ cos θ = ⅙ md² α
3k sin θ cos θ = mα
3/2 k sin(2θ) = mα
For small values of θ, sin θ ≈ θ.
3/2 k (2θ) = mα
α = (3k/m) θ
d²θ/dt² = (3k/m) θ
For this differential equation, the coefficient is the square of the angular frequency, ω².
ω² = 3k/m
ω = √(3k/m)
The period is:
T = 2π / ω
T = 2π √(m/(3k))
Given m = 2.50 kg and k = 900 N/m:
T = 2π √(2.50 kg / (3 × 900 N/m))
T = 0.191 s
The period is 0.191 seconds.
The correct statements are:
B. a small rock sitting on top of a big rock
As the rock is at a height with respect to ground it has potential Energy
and
C. a stretched rubber band
A stretched rubber band has elastic potential energy
The others are actually moving and hence would consist of Kinetic energy. Potential energy is stored in objects that do not move and are stationary.
Answer:
Why does Alice forget the name of the woods and her own name?
Answer: Option B.
Since here the truck is moving on a circular track, it will experience centripetal force.
F(centripetal) = m × acc
or

where r is the radius of the track.
m is the mass of truck
v is the speed of the truck.
Given: v = <span>13 m/s
m = </span><span>1,600 kg
</span>F = 3300 Newton
To find = radius of track=?


r = 81.94 m
Therefore, radius of track is 81.94 m
Answer:
The photoelectric effect is a phenomenon in which the photoelectrons are emitted from the metal when an incident electromagnetic wave hits the metal. The incident light should have a threshold frequency to meet the work function of the metal