Answer: F = 2N
Explanation: If a current i is flowing in a wire of length L lying in a region of magnetic field B, then the magnetic force acting on the wire is given by
F = BIL
Please find the attached file for the solution
Answer:
979.6 kg/m³
Explanation:
We know pressure P = hρg where h = height of liquid = 10.5 m, ρ = density of liquid and g = acceleration due to gravity = 9.8 m/s²
So, density ρ = P/hg
Since P = 100.8 kPa = 100.8 × 10³ Pa
substituting the values of the variables into the equation for ρ, we have
ρ = P/hg
= 100.8 × 10³ Pa ÷ (10.5 m × 9.8 m/s²)
= 100.8 × 10³ Pa ÷ 102.9 m²/s²
= 0.9796 × 10³ kg/m³
= 979.6 kg/m³
So, the density of the liquid is 979.6 kg/m³
If the length and linear density are constant, the frequency is directly proportional to the square root of the tension.
Answer:
5 m/s2
Explanation:
The total acceleration of the circular motion is made of 2 components: centripetal acceleration and linear acceleration of 4 m/s2. They are perpendicular to each other.
The centripetal acceleration is the ratio of instant velocity squared and the radius of the circle

So the magnitude of the total acceleration is
