Answer:
The speed is
and the direction is heading north.
Explanation:
In collisions the force exerted by the objects that collide is higher enough than the external forces that we can neglect that external forces, with that assumption we can use the conservation fo momentum law that states, final total momentum (pf) is equal initial total momentum (pi) if there’re not external forces or they are small enough to be neglected. Mathematically:

The total momentum is the sum of the momentum of each of the bodies we're dealing, in our case the moment of each car, then:

with pn the momentum of the 1000kg car heading north and ps the 800kg car heading south. Momentum is defined as mass times velocity, then:
(1)
It's important to note that when we talk about momentum and velocity direction matters, so we're are going to choose a system of reference where quantities pointing north are positive and pointing south are negative. So, the initial velocity of 1000 kg car is vni=5 m/s, initial velocity of 800 kg car is vsi=-4 m/s and the final velocity of 1000 kg car is vnf=-1 m/s. Now we can solve (1) for vsf and use the values we already have:

Because the sign is positive the direction is to heading north.
Answer:
THE WALL MOVES AWAY FROM THE BALL
Explanation:
NEWTON'S THIRD LAW STATES THAT THERE IS A OPPOSITE REACTION
Answer:
28.2 m/s
Explanation:
The range of a projectile launched from the ground is given by:

where
v is the initial speed
g = 9.8 m/s^2 is the acceleration of gravity
is the angle at which the projectile is thrown
In this problem we have
d = 81.1 m is the range
is the angle
Solving for v, we find the speed of the projectile:

Decibels I believe? I’m not 100% sure
Part a)
Power rated on the elevator is given as

now the mass that is lifted above is given as

height of the elevator lifted is

now the potential energy is given as


now power is defined as rate of energy



so it will take 13.5 s to lift up
Part b)
Electrical energy used




so electrical energy used in this process will be 120050 J