Acceleration = (change in speed) / (time for the change)
- 4.1 m/s² = (-9 m/s) / (time for the change)
Time for the change = (-9 m/s) / (-4.1 m/s²) = 2.2 seconds
Answer: The most likely identity of the substance is iron.
Explanation:
The quantity of heat required to raise the temperature of a substance by one degree Celsius is called the specific heat capacity.

Q = Heat absorbed=
Joules
m= mass of substance = 11.9 g
c = specific heat capacity = ?
Initial temperature of the water =
= 25.0°C
Final temperature of the water =
= 45.0°CChange in temperature ,
Putting in the values, we get:


The specific heat of 0.45 is for iron and thus the substance is iron.
Answer:
B) R1 = 6 V and R2 = 6V
Explanation:
In series, both resistors will carry the same current.
that current will be I = V/R = 12 / (10 + 10) = 0.6 A
The voltage drop across each resistor is V = IR = 0.6(10) = 6 V
When two mechanical waves that have positive displacements from the equilibrium position meet and coincide, a constructive interference occurs.
Option A
<h3><u>
Explanation:</u></h3>
Considering the principle of superposition of waves; the resultant amplitude of an output wave due to interference of two or more waves at any point is given by individual addition of their amplitudes at that point. Two waves with positive displacements refer to the fact that crest of the both the waves are on the same side of displacement axis, either both are positive or both are negative, similarly with their troughs.
If such two waves with their crest on crest meet at any point, by superposition principle. their individual amplitude gets added up and hence the resultant wave after interference is greater in amplitude that both the individual waves. This is termed as a constructive interference. Destructive interference on the other hand is a condition when one of the two waves has a positive displacement and other has a negative displacement (a condition of one’s crest on other’s trough); resulting in amplitude subtraction.