Answer:
The short answer is that velocity is the speed with a direction, while speed does not have a direction.
Explanation:
Speed is how fast an object is moving. It is calculated by the displacement of space per a unit of time. Velocity is the rate at which an object changes position in a certain direction. It is calculated by the displacement of space per a unit of time in a certain direction. Velocity deals with direction, while speed does not.
Explanation:
Question 9 A machine is applying a torque to rotationally accelerate a metal disk during a manufacturing process. An engineer is using a graph of torque as a function of time to determine how much the disk's angular speed increases during the process The graph of torque as a function of time starts at an initial torque value and is a straight line with positive slope. What aspect of the graph and possibly other quantities must be used to calculate how much the disk's angular speed increases during the process? The slope of the graph multiplied by the disk's radius will equal the change in angular speed The area under the graph multiplied by the disk's radius will equal the change in angular speed. The slope of the graph divided by the disk's rotational inertia will equal the change in angular speed. The area under the graph divided by the disk's rotational inertia will equal the change in angular speed. The area under the graph multiplied by the disk's rotational inertia will equal the change in angular speed E
Answer:
d. interspecific competition
Explanation:
Answer:
w = w₀ / 2 the angular velocity is half the initial value.
Explanation:
We can analyze this exercise as if we added another disk to obtain a disk with twice the mass, for which if the system is two disks, the angular tidal wave is conserved
initial instant.
L₀ = I₀ w₀
final moment
L_f = I w
the moment is preserved
L₀ = L_f
I₀ w₀ = I w
the moment of inertia of a disk is
I = ½ m R²
we substitute
½ m R² w₀ = ½ (2m) R² w
w = w₀ / 2
for the case of a disk with twice the mass, the angular velocity is half the initial value.
M/s2 is the SI of an acceleration.
a couple of things that are necessary to measure this :
- use the timing resources to measure the duty cycle
- performing a computationally intensive division operation