-60 degrees north north north
Answer:
Explanation:
Let's use the equation that relate the temperatures and volumes of an adiabatic process in a ideal gas.
.
Now, let's use the ideal gas equation to the initial and the final state:
Let's recall that the term nR is a constant. That is why we can match these equations.
We can find a relation between the volumes of the initial and the final state.
Combining this equation with the first equation we have:
Now, we just need to solve this equation for T₂.
Let's assume the initial temperature and pressure as 25 °C = 298 K and 1 atm = 1.01 * 10⁵ Pa, in a normal conditions.
Here,
Finally, T2 will be:
The motorist travels (a) 58 km/h and (b) ~16.1 m/sec
Answer: Use less water
only turn on lights when needed
electrical cars
less gas usage
Explanation:
Answer:
The gravitational acceleration of a planet of mass M and radius R
a = G*M/R^2.
In this case we have:
G = 6.67 x 10^-11 N (m/kg)^2
R = 2.32 x 10^7 m
M = 6.35 x 10^30 kg
Now we can compute:
a = (6.67*6.35/2.32^2)x10^(-11 + 30 - 2*7) m/s^2 = 786,907.32 m/s^2
The acceleration does not depend on the mass of the object.