The farther apart the two objects, the weaker the gravitational attraction between them.
Meteorite meteoroid asteroid moon give brainlest please
Answer:
3) D: 31 m/s
4) D: 84.84 metres
Explanation:
3) Initial velocity along the x-axis is;
v_x = v_o•cos θ
Initial velocity along the y-axis is;
v_y = v_o•sin θ
Plugging in the relevant values, we have;
v_x = 31 cos 60
v_x = 31 × 0.5
v_x = 15.5 m/s
Similarly,
v_y = 31 sin 60
v_y = 31 × 0.8660
v_y = 26.85 m/s
Thus, magnitude of the initial velocity is;
v = √(15.5² + 26.85²)
v ≈ 31 m/s
4) Formula for horizontal range is;
R = (v² sin 2θ)/g
R = (31² × sin (2 × 60))/9.81
R = 84.84 m
Because their is nothing at the geographical poles that attracts the magnet
<span>Since youc oncetrate all your force directly towards the moment arm it means that you push it at an angle of your force is directed to the left or the right and I bet that it must be 90</span> degrees to the bar. Obviuosly, if you are about to push it you will do it straight up but not in a zig zag way. In other words, it should be perpendicular to the arm because the<span> torque can be produced only if force is applied at a constant index (90).
Hope that helps! Regards.</span>