Given:
m(mass of the box)=10 Kg
t(time of impact)=4 sec
u(initial velocity)=0.(as the body is initially at rest).
v(final velocity)=25m/s
Now we know that
v=u+at
Where v is the final velocity
u is the initial velocity
a is the acceleration acting on the body
t is the time of impact
Substituting these values we get
25=0+a x 4
4a=25
a=6.25m/s^2
Now we also know that
F=mxa
F=10 x6.25
F=62.5N
Force = mass x acceleration
force = 2500kg x (20m/s / 10m/s)
force = 2500kg x 2m/s^2
force = 5000kg m/s^2 = 5kN
i hope this is right (^^)
Answer:
This is because The energies of atoms are quantized.
Electrons are allowed "in between" quantized energy levels, and, thus, only specific lines are observed
Answer:
The average velocity has magnitude = 10 km/h , direction: east
Explanation:
In order to find the average velocity of the car we need to know the final and initial positions, and the time that took to get from one to the other.
Notice that since its movement was 60 km straight east and then from there 40 km straight west, the car is positioned at 20 km to the east of its initial departure point. therefore the vector change in position is a vector 20 km in magnitude, and direction towards the east.
Since it took the car a total of 1.33 hours plus 0.67 hours to reach its final position, the total time elapsed is: 1.33 + 0.67 hours = 2 hours.
Then,the velocity vector has magnitude; 20 km / 2 hours = 10 km/hour
As we mentioned above. the direction of the velocity vector is east.