1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Arisa [49]
3 years ago
8

The separation in time between the arrival of primary and secondary waves is

Physics
1 answer:
Gre4nikov [31]3 years ago
3 0
The separation in time between the arrival of primary and secondary wave is called LAG TIME.
The time difference between the arrival of primary wave and secondary wave in a seismogram is called lag time. The primary wave always travels faster than the secondary wave, thus the difference between the two can be obtained by estimating the difference between the arrival time of the two waves/.
You might be interested in
Your car is initially at rest when you hit that gas and the car begins to accelerate. The forward force of the car is 5630 N whi
Neporo4naja [7]
330...................
6 0
2 years ago
(25 pts) Estimate how much collector area and storage capacity would be required for an active solar hot-water system designed t
Aneli [31]

Answer:

The required  total area is 1.48 m²

Explanation:

Given that,

Latitude = 44+° N

New Mexico,

Latitude= 35+° N

Heat capacity = 4200 J/Kg°C

Temperature = 60°C

Let us assume the input temperature 22°C

Estimate volume of water 100 ltr for 4 person.

We need to calculate the heat

Using formula of heat

H=mc_{p}\Delta T

H=mc_{p}(T_{f}-T_{i})

Put the value into the formula

H=100\times4200\times(60-22)

H=15960\ KJ...(I)

Let solar radiation for 6 hours/day.

We need to calculate the total energy per unit area

Using formula of energy

E=1000\times6\times3600\ J/m^2

E=21600\ KJ/m^2

Let the efficiency of collector is 50 %

Then,  the total energy per unit area will be

E=21600\times\dfrac{50}{100}

E=10800\ KJ/m^2....(II)

We need to calculate the required total area

Using equation (I) and (II)

A=\dfrac{H}{E}

Where, H = heat

E = total energy

Put the value into the formula

A=\dfrac{15960}{10800}

A=1.48\ m^2

Hence, The required  total area is 1.48 m²

6 0
3 years ago
When an astronomer sees certain stars and galaxies that look much redder than expected, what conclusion might the astronomer dra
Ratling [72]

It all comes to the doppler effect, the red shift means that the galaxy is moving away from us. The redshift is a result from the doppler effect, so as the galaxy moves away the wavelength expands, increasing the wavelength which responds to the red light.

8 0
3 years ago
Read 2 more answers
A 100g block lies on an inclined plane that makes an angle of 15 degrees with the horizontal. The coefficient of kinetic frictio
Fed [463]

Answer:

Mass that one should put in the container so that the 100 g block slides down the inclined plane at constant speed = 34.16 g

Explanation:

The vertical forces (with respect to the inclined plane) acting on the 100 g block include the component of the weight of the block in the direction vertical to the inclined plane and the normal reaction of the plane on the block.

And sum of upward forces = sum of downward forces.

N = mg cos θ

m = 100 g = 0.10 kg

g = acceleration due to gravity = 9.8 m/s²

θ = 15°

N = (0.1×9.8×cos 15°) = 0.946582 N

The horizontal forces (With respect to the inclined plane) include the frictional force (acting upwards for the inclined plane, opposite to the intended direction of motion), the Tension in the rope (acting downwards, away from the 100 g block) and the horizontal component (with respect to the inclined plane) of the weight of the block, F, (also acting downards).

For the body to slide down the inclined plane at constant speed, the downward sloping forces must balance the frictional force, that is, there will be no acceleration.

Frictional force = Tension + F

Frictional force = μN

where μ = coefficient of kinetic friction = 0.60

N = normal reaction = 0.9466 N

Frictional force = Fr = (0.60 × 0.9466) = 0.56796 N = 0.568 N

The horizontal component (with respect to the inclined plane) of the weight of the block (also acting downards) = mg sin θ

F = (0.10 × 9.8 × sin 15°) = 0.253624 N

Tension in the rope = T = ?

Fr = F + T

T = Fr - F = 0.568 - 0.253624 = 0.314376 N = 0.3144 N

But the balance on the rope now has the total weight on the container (weight of container + weight on the container) to be equal to 2T.

2T = mg

2 × 0.3144 = 9.8m

m = 0.06416 kg = 64.16 g.

Mass of the container = 30 g

So, mass that one should put in the container so that the 100 g block slides down the inclined plane at constant speed = 64.16 - 30 = 34.16 g

Hope this Helps!!!

8 0
3 years ago
How are mixtures and pure substances related?
Elden [556K]
You are talking about make sure's and pearl substance I thought you was talking about mix in with something
4 0
3 years ago
Other questions:
  • Ninety-nine percent of the radiation from the sun consists of visible light, ultraviolet light.true or false?
    13·1 answer
  • Consider water flowing through a cylindrical pipe with a variable cross-section. The velocity is v at a point where the pipe dia
    7·1 answer
  • As an admirer of Thomas Young, you perform a double-slit experiment in his honor. You set your slits 1.15 mm apart and position
    15·1 answer
  • The time between a lightning flash and the following thunderclap may be used to estimate, in kilometers, how far away a storm is
    7·1 answer
  • The temperature of a superconductor is gradually lowered. At the critical temperature, how does the resistivity of the supercond
    15·1 answer
  • What is the period of a wave if the wavelenght is 110m and the speed is 200m/s? 2 s 100s 200,000 s 0.5 s
    5·2 answers
  • How can you put a lever into a rube goldberg machine? answer ASAP
    8·2 answers
  • b) Si la distancia entre el punto A y el punto B es de 650 metros aproximadamente y la estudiante tarda 15 minutos (1200 segundo
    7·1 answer
  • 1. The is the sum of all forces acting on an object.
    9·1 answer
  • A spaceprobe in outer space is flying with a constant speed of 1.795 km/s. The probe has a payload of 1635.0 kg and it carries 4
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!