1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Reika [66]
3 years ago
8

20

Physics
1 answer:
Pani-rosa [81]3 years ago
4 0
The total displacement is 4.0 m east.
You might be interested in
Function of a simple pendulum​
Misha Larkins [42]

Answer:

A pendulum is a mechanical machine that creates a repeating, oscillating motion. A pendulum of fixed length and mass (neglecting loss mechanisms like friction and assuming only small angles of oscillation) has a single, constant frequency. This can be useful for a great many things.

From a historical point of view, pendulums became important for time measurement. Simply counting the oscillations of the pendulum, or attaching the pendulum to a clockwork can help you track time. Making the pendulum in such a way that it holds its shape and dimensions (in changing temperature etc.) and using mechanisms that counteract damping due to friction led to the creation of some of the first very accurate all-weather clocks.

Pendulums were/are also important for musicians, where mechanical metronomes are used to provide a notion of rhythm by clicking at a set frequency.

The Foucault pendulum demonstrated that the Earth is, indeed, spinning around its axis. It is a pendulum that is free to swing in any planar angle. The initial swing impacts an angular momentum in a given angle to the pendulum. Due to the conservation of angular momentum, even though the Earth is spinning underneath the pendulum during the day-night cycle, the pendulum will keep its original plane of oscillation. For us, observers on Earth, it will appear that the plane of oscillation of the pendulum slowly revolves during the day.

Apart from that, in physics a pendulum is one of the most, if not the most important physical system. The reason is this - a mathematical pendulum, when swung under small angles, can be reasonably well approximated by a harmonic oscillator. A harmonic oscillator is a physical system with a returning force present that scales linearly with the displacement. Or, in other words, it is a physical system that exhibits a parabolic potential energy.

A physical system will always try to minimize its potential energy (you can accept this as a definition, or think about it and arrive at the same conclusion). So, in the low-energy world around us, nearly everything is very close to the local minimum of the potential energy. Given any shape of the potential energy ‘landscape’, close to the minima we can use Taylor expansion to approximate the real potential energy by a sum of polynomial functions or powers of the displacement. The 0th power of anything is a constant and due to the free choice of zero point energy it doesn’t affect the physical evolution of the system. The 1st power term is, near the minimum, zero from definition. Imagine a marble in a bowl. It doesn’t matter if the bowl is on the ground or on the table, or even on top of a building (0th term of the Taylor expansion is irrelevant). The 1st order term corresponds to a slanted plane. The bottom of the bowl is symmetric, though. If you could find a slanted plane at the bottom of the bowl that would approximate the shape of the bowl well, then simply moving in the direction of the slanted plane down would lead you even deeper, which would mean that the true bottom of the bowl is in that direction, which is a contradiction since we started at the bottom of the bowl already. In other words, in the vicinity of the minimum we can set the linear, 1st order term to be equal to zero. The next term in the expansion is the 2nd order or harmonic term, a quadratic polynomial. This is the harmonic potential. Every higher term will be smaller than this quadratic term, since we are very close to the minimum and thus the displacement is a small number and taking increasingly higher powers of a small number leads to an even smaller number.

This means that most of the physical phenomena around us can be, reasonable well, described by using the same approach as is needed to describe a pendulum! And if this is not enough, we simply need to look at the next term in the expansion of the potential of a pendulum and use that! That’s why each and every physics students solves dozens of variations of pendulums, oscillators, oscillating circuits, vibrating strings, quantum harmonic oscillators, etc.; and why most of undergraduate physics revolves in one way or another around pendulums.

Explanation:

7 0
3 years ago
Waves transport
Brilliant_brown [7]

Answer:

d)energy

Explanation:

Waves can transfer energy over distance without moving matter the entire distance. For example, an ocean wave can travel many kilometers without the water itself moving many kilometers. The water moves up and down—a motion known as a disturbance. It is the disturbance that travels in a wave, transferring energy.

5 0
3 years ago
3. A cat pushes a 0.25-kg toy with a net force of 8 N. According to Newton's second
jek_recluse [69]
  • Mass=0.25kg
  • Force=8N

\\ \sf{:}\!\implies F=ma

\\ \sf{:}\!\implies Acceleration=\dfrac{F}{m}

\\ \sf{:}\!\implies Acceleration=\dfrac{8}{0.25}

\\ \sf{:}\!\implies Acceleration=32m/s^2

5 0
3 years ago
Blocks A and B are identical metal blocks. Initially block A is neutral, and block B has a net charge of 8.7 nC. Using insulatin
JulsSmile [24]

Explanation:

(a)   Since, it is given that the blocks are identical so distribution of charge will be uniform on both the blocks.

Hence, final charge on block A will be calculated as follows.

         Charge on block A = \frac{(8.7 + 0 nC}{2}

                                           = 4.35 nC

Therefore, final charge on the block A is 4.35 nC.

(b)  As it is given that the positive charge is coming on block A . This means that movement of electrons will be from A to B.

Thus, we can conclude that while the blocks were in contact with each other then electrons will flow from A to B.

6 0
3 years ago
Read 2 more answers
Using hooke's law find the elastic constant of a spring that stretches 2 cm when 4newton force is applied to it
erica [24]

<u>Answer:</u>

2N/cm

<u>Step-by-step explanation:</u>

According to the Hooke's Law, the force required to extend or compress a spring is directly proportional distance you can stretch it, which is represented as:

F=kx

where, F is the force which is stretching or compressing the spring,

k is the spring constant; and

x is the distance the spring is stretched.

Substituting the given values to find the elastic constant  k to get:

F=kx

4=k(2)

k=\frac{4}{2}

k=2

Therefore, the elastic constant is 2 Newton/cm.

5 0
3 years ago
Other questions:
  • 8. The fact that voltage can be created by exerting force on a crystal is used in which type of sensor?
    5·1 answer
  • Fred has a very detailed model of the solar system where each planet is made out of granite rock. Since his little sister really
    9·2 answers
  • When the potential difference between the plates of an ideal air‐filled parallel plate capacitor is 35 v, the electric field bet
    8·1 answer
  • PHYSICS PLEASE HELP!
    8·1 answer
  • A ball is whirled on the end of a string in a horizontal circle of radius R at constant speed v. Complete the following statemen
    11·1 answer
  • There are two objects with initial charge. Object A has 3 positive and 3 negative charges. Object B has 5 positive and 3 negativ
    7·1 answer
  • What is non-point source pollution, and why is this kind of pollution hard to monitor and control?
    11·1 answer
  • Does a thicker core make the electromagnet stronger?
    8·2 answers
  • 17. The flow of electric charges though a conductor is known as
    5·1 answer
  • A water droplet falling in the atmosphere is spherical. Assume that as the droplet passes through a cloud, it acquires mass at a
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!