<h2>
Hello!</h2>
The answer is:
Hence, the new pressure will be 2.07 atm.

<h2>
Why?</h2>
Since we know that the gas is inside of a rigid container, meaning that the volume will be kept constant, we can solve the problem using the Gay-Lussac's Law.
The the Gay-Lussac's Law establishes that when an ideal gas is kept at the same volume, the pressure and the temperature will be proportional.
We need to pay special attention when we are working with the Gay-Lussac's Law since its equaitons works with absolute temperatures (Kelvin ), so, if we are working with relative temperatures such as Celsius degrees or Fahrenheit degrees, we need to convert the temperatures to Kelvin.
We can convert from Celsius degrees to Kelvin using the following formula:

So, we have the Gay-Lussac's equation:

Also, we are given the following information:

Therefore, converting the temperature to Kelvin, we have:

Now, calculating we have:


Hence, the new pressure will be 2.07 atm.

Have a nice day!
Answer:
The representative particle for an element is AN ATOM.
Explanation:
Representative particle of a substance refers to the smallest unit of that substance, which can not be broken down into smaller particles. The representative particles of an element is an atom, because each element is made up of atoms, which are the smallest unit of that element; they can not be broken down further.
A representative particle is chemically identical with the parent element and will have all the properties of the parent element.
Answer:
NaI
Explanation:
In I₂, HI and IBr, both atoms are nonmetals and they form covalent bonds in which electrons are shared.
In NaI, Na is a metal and I a nonmetal, so they form an ionic bond, where Na loses an electron to form Na⁺ and I gains an electron to form I⁻. Anions and cations are attracted to each other through electrostatic forces.
Since ionic bonds are stronger than covalent bonds, more energy is required to break them in the melting process, thus having higher melting points.
All in all, NaI is the one with the highest melting point.