Answer:
The diameter of Neptune is approximately 49,500 km. This makes Neptune the 4th largest planet in the Solar System, after Jupiter, Saturn and Uranus.
Answer:
- 1273.02 kJ.
Explanation:
This problem can be solved using Hess's Law.
Hess's Law states that <em>regardless of the multiple stages or steps of a reaction, the total enthalpy change for the reaction is the sum of all changes. This law is a manifestation that enthalpy is a state function.</em>
- We should modify the given 3 equations to obtain the proposed reaction:
<em>6C(s) + 6H₂(g) + 3O₂(g) → C₆H₁₂O₆(s),</em>
<em></em>
- We should multiply the first equation by (6) and also multiply its ΔH by (6):
6C(s) + 6O₂(g) → 6CO₂(g), ∆H₁ = (6)(–393.51 kJ) = - 2361.06 kJ,
- Also, we should multiply the second equation and its ΔH by (6):
6H₂(g) + 3O₂(g) → 6H₂O(l), ∆H₂ = (6)(–285.83 kJ) = - 1714.98 kJ.
- Finally, we should reverse the first equation and multiply its ΔH by (- 1):
6CO₂(g) + H₂O(l) → C₆H₁₂O₆(s) + 6O₂(g), ∆H₃ = (-1)(–2803.02 kJ) = 2803.02 kJ.
- By summing the three equations, we cam get the proposed reaction:
<em>6C(s) + 6H₂(g) + 3O₂(g) → C₆H₁₂O₆(s),</em>
<em></em>
- And to get the heat of reaction for the production of glucose, we can sum the values of the three ∆H:
<em>∆Hrxn = ∆H₁ + ∆H₂ + ∆H₃ =</em> (- 2361.06 kJ) + (- 1714.98 kJ) + (2803.02 kJ) = <em>- 1273.02 kJ.</em>
Let <span>A= ebc </span>
<span> 0.765 = 86,300*1.3*c </span>
<span>
Solve for c = approximately 7E-6 Molar
= mols/L soln. </span>
<span>g = 7E-6*893.49
= about 0.006 g chlorophyll/L soln. </span>
<span>
1000 x 0.785 = 785 g ethanol. </span>
<span>Conc. = about 0.006g chlorophyll/785 g soln. </span>
<span>
Change that to ppm. by using formula:
(0.006/785)*1E6</span>
A 1.775g sample mixture of KHCO₃ is decomposed by heating. if the mass loss is 0.275g, the mass percentage of KHCO₃ is 70.4%.
<h3>What is a decomposition reaction?</h3>
A decomposition reaction can be defined as a chemical reaction in which one reactant breaks down into two or more products.
- Step 1: Write the balanced equation for the decomposition of KHCO₃.
2 KHCO₃(s) → K₂CO₃(s) + CO₂(g) + H₂O(l)
The mass loss of 0.275 g is due to the gaseous CO₂ that escapes the sample.
- Step 2: Calculate the mass of KHCO₃ that formed 0.275 g of CO₂.
In the balanced equation, the mass ratio of KHCO₃ to CO₂ is 200.24:44.01.
0.275 g CO₂ × 200.24 g KHCO₃/44.01 g CO₂ = 1.25 g KHCO₃
- Step 3: Calculate the mass percentage of KHCO₃ in the sample.
There are 1.25 g of KHCO₃ in the 1.775 g sample.
%KHCO₃ = 1.25 g/1.775 g × 100% = 70.4%
A 1.775g sample mixture of KHCO₃ is decomposed by heating. if the mass loss is 0.275g, the mass percentage of KHCO₃ is 70.4%.
Learn more about decomposition reactions here: brainly.com/question/14219426
Answer:
1.55 × 10²⁵ atoms of H
Explanation:
3.21mol C₃H₈ × 8mol H × (6.022×10²³)