Answer:
134.8 seconds is the half-life (in seconds) of the reaction for the initial
concentration
Explanation:
Half life for second order kinetics is given by:

Integrated rate law for second order kinetics is given by:

= half life
k = rate constant
= initial concentration
a = Final concentration of reactant after time t
We have :

Initial concentration of ![C_2F_4=[a_o]=\frac{0.438 mol}{2.42 L}=0.1810 mol/L](https://tex.z-dn.net/?f=C_2F_4%3D%5Ba_o%5D%3D%5Cfrac%7B0.438%20mol%7D%7B2.42%20L%7D%3D0.1810%20mol%2FL)
Rate constant = k = 



134.8 seconds is the half-life (in seconds) of the reaction for the initial
concentration
Answer:
it can help heat or cool a room.
Explanation:
I think this is right...
Answer:
P₂ = 130.18 kPa
Explanation:
In this case, we need to apply the Gay-Lussack's law assuming that the volume of the container remains constant. If that's the case, then:
P₁/T₁ = P₂/T₂ (1)
From here, we can solve for the Pressure at 273 K:
P₂ = P₁ * T₂ / T₁ (2)
Now, all we need to do is replace the given data and solve for P₂:
P₂ = 340 * 273 / 713
<h2>
P₂ = 130.18 kPa</h2>
Hope this helps
Answer:
It is Though the transfer of charges from one object to another, or (A).
Answer:
first of all we have to put sugar in bread and we have to add some ginger paste over it